
Calculating average values for many-electron atoms  
under the central field approximation 
 
When the Hamiltonian for a many-electron atom can be written, in the central field 
approximation, as 

H  ≈ - (h2/2μ){∇1
2 + ∇2

2  + ∇3
2  + ∇4

2 +...} +V(r1) +V(r2) +V(r3) +V(r4) +... 
then the problem is exactly separable, no matter how complicated the V(ri) 
expressions may be, as long as each one is a function only of the distance of the ith 
electron from the nucleus, not of θi or  φi.  
In this case then the problem  
  H  Ψ(1, 2, 3, 4,...) = E Ψ(1, 2, 3, 4,...) can be solved by solving individual one-
electron problems: 

 {− (h2/2μ)∇i
2 +V(ri)}Ψ( ri , θi , φi ) = Ei Ψ( ri , θi , φi.) 

Since the only θi , φi dependence is in ∇i
2 then each one-electron problem to be 

solved can be solved by separation of the variables   θi , φi leading to the same 
solutions as for the hydrogen atom itself, namely the same quantum numbers l and 
m and the same functions Ylm(θi , φi) arise in precisely the same way as for the 
hydrogen atom. The only difference is that the remaining differential equation in r 
to be solved : 

{ (h2/2μ)[∂2/∂ri
2 + (2/ri) ∂/∂ri + l(l+1)/ r i 

2 ]  + V(r i)} F(r i) = E i F(r i)  
is different from that in the hydrogen atom in that here, V(r i) ≠ −Ze2/ri 
This means that the functions F(r i) ≠ Rnl(r i).  
Nevertheless, a simple product function Ψ( ri , θi , φi ) = F(r i) ⋅Ylm(θi , φi) is 
associated with the one-electron energy E i .  This also means that the many 
electron functions can be written as simple products (to be antisymmetrized later) 

Ψ(1, 2, 3, 4, ...) =  Ψ(r1, θ1 , φ1)⋅Ψ(r2, θ2 , φ2)⋅Ψ(r3, θ3 , φ3)⋅Ψ(r4, θ4 , φ4)⋅ ... 
which is represented by an “electronic configuration” such as 1s22s12p33d2. 
 
If the effect of all the other electrons were to reduce the nuclear charge seen by the 
ith electron, from the full charge Z down to Zeff

(i) then, the many-electron problem 
separates into  

{ (h2/2μ)[∂2/∂ri
2 + (2/ri) ∂/∂ri + l(l+1)/ r i 

2 ] −Zeff
(i)e2/r i } F(r i) = E i F(r i)  

each one of which is a hydrogen atom with Zeff
(i) appearing everywhere Z used to 

be.  This means that F(r i) = Rnl(r i), just as for the hydrogen atom, and all the 
wavefunctions that we found for the hydrogen atom are the same ones as for each 
electron in the many-electron atom. Because of this, the one-electron energies are 
E i = −(Zeff

(i) /ni)2 (e2/2a0) and all the one-electron operators Op which can be 



expressed in terms of r i  can be obtained from the integrals derived for the 
hydrogen atom, for example the average value: 

〈(r/a0)2〉 = (n2/2Z2)[5n2  +1 -3 l(l+1)] 
Clementi and Raimondi, for example, provide tables of [Zeff

(i) /n ] for each electron 
in the ground configuration of atoms He up to Kr. [E. Clementi and D. L. 
Raimondi, J. Chem. Phys. 38, 2686 (1963)] Of course, these only apply to that 
particular configuration. Clearly the amount of effective screening by the other 
electrons depends on which types of functions describe their probability 
distribution in space. 
 



In the Slater approximation, the Hamiltonian is taken to be of the form 
H  ≈ - (h2/2μ){∇1

2 + ∇2
2  + ∇3

2  + ∇4
2 +...} −Zeff

(1)e2/r1 −Zeff
(2)e2/r2 −Zeff

(3)e2/r3 
−Zeff

(4)e2/r4 −...  
Since the Zeff

(i) are constants, although each is different from Z itself, the many-
electron problem separates into  

{ (h2/2μ)[∂2/∂ri
2 + (2/ri) ∂/∂ri + l(l+1)/ r i 

2 ] −Zeff
(i)e2/r i } F(r i) = E i F(r i)  

each one of which is a hydrogen atom with Zeff
(i) appearing everywhere Z used to 

be.  This means that F(r i) = Rnl(r i), just as for the hydrogen atom, and all the 
wavefunctions that we found for the hydrogen atom are the same ones as for each 
electron in the many-electron atom under the Slater approximation. Because of 
this, the one-electron energies are E i = −(Zeff

(i) /ni)2 (e2/2a0) and all the one-electron 
operators Op  which can be expressed in terms of r i can be obtained from the 
integrals derived for the hydrogen atom, for example, given 
∫ψn,l,m*r2 ψ n,l,m dτ = [n2/2Z2]⋅{ 5n2  +1- 3l(l+1)} for H-like atom.  
the average value: 

〈(r/a0)2〉 = (n2/2Z2)[5n2  +1 -3 l(l+1)] 
 
Slater’s rules: 
1. s1s = 0.30 
2. For electrons with n > 1 and l = 0, 1 
 snl = 0.35ksame + 0.85kin + 1.00kinner 
 
 where 
 ksame =  number of other electrons in the same shell as the screened  
   electron of interest 
 kin =  number of electrons in the shell with principal quantum  
   number n-1 
 kinner =  number of electrons in the shell with principal quantum  
   number n-2 
 
3. For 3d electrons 
 s3d = 0.35k3d + 1.00kin 
  
 where 
 k3d =  number of 3d electrons 
 kin =  number of electrons with n ≤ 3 and l < 2 
 



Example:  Energy Calculations 
Problem: The electron transfer that occurs when a Li+ and a H− ion are formed 
from a Li atom and a H atom leads to the formation of LiH. Using Slater’s rules, 
derive an expression for the calculation of the energy change that is involved 
when this occurs. Is the energy evolved or absorbed in this chemical reaction? Do 
the calculations, giving your answer in eV. 
 
Using Slater’s rules, 
Li  Z = 3, electronic configuration: 1s22s 
electron n l screening from others 

 
snl Z-s nl 

   1 2 3   
1 1 0 self 0.30 0 0.30 2.70 
2 1 0 0.30 self 0 0.30 2.70 
3 2 0 0.85 0.85 self 1.70 1.30 

 
Li+  Z = 3, electronic configuration: 1s2 
electron n l screening from others 

 
snl Z-s nl 

   1 2    
1 1 0 self 0.30  0.30 2.70 
2 1 0 0.30 self  0.30 2.70 

 
H −  Z = 1, electronic configuration: 1s2 
electron n l screening from others 

 
snl Z-s nl 

   1 2    
1 1 0 self 0.30  0.30 0.70 
2 1 0 0.30 self  0.30 0.70 

 
Energy = - {Zeff(i)/ni}2 (e2/2a0) for each electron 
 
Before: Li + H    
Energy for Li = -13.6 eV⋅{2⋅[2.70/1]2 + [1.30/2]2} 
Energy for H = -13.6 eV⋅{[1/1]2} 
Total energy = -13.6 eV⋅{15.00 + 1} 
 
After: Li+ + H −  
Energy for Li+ = -13.6 eV⋅{2⋅ [2.70/1]2 } 



Energy for H − = -13.6 eV⋅{2⋅ [0.70/1]2} 
Total energy = -13.6 eV⋅{14.58 + 0.98}  
Energy difference = Eafter - Ebefore  = -13.6 eV{ 15.56 - 16 } = +5.98 eV 
Although Eafter is higher than Ebefore , the reaction produces charged particles which 
have Coulomb interaction energy equal to {- e2/rLiH } at the separation rLiH . 
 
Example: Diamagnetic susceptibility of a many-electron atom: 
Problem: When an atom is placed in a magnetic field, the magnetic field induces a 
magnetic moment in the atom. The energy term in this case is proportional to the 
square of the applied magnetic field and the proportionality constant is called the 
magnetic susceptibility. The magnetic susceptibility, χ, is diamagnetic unless the 
atom has unpaired electrons.The diamagnetic susceptibility contributes to the 
susceptibility of all molecules.  χd has the following operator (for an atom having 
N electrons): 

Op  = − (e2/3mc2) ½ ri 
2 . 

i

N

=
∑

1

Derive the method by which it will be possible to calculate the diamagnetic 
susceptibility χd  (in units of cm3 per  atom or molecule) of a single Be atom in its 
ground state, using Slater’s rules. Carry out the numerical computations. The 
answer should be very small; to get the observed molar magnetic susceptibility one 
has to multiply this by Avogadro’s number. The quantity (e2/3mc2) is 9.393×10−14 
cm and a0 = 0.529167 × 10−8  cm . 
 
Solution: 
χd has the following operator (for an atom having N electrons): 

Op  = − (e2/3mc2) ½ ri 
2 . 

i

N

=
∑

1

Calculate 〈χd 〉 for the ground state of the Be atom Z=4. 
 
How to do it:  
(1) First determine the electronic configuration for the ground state.  
(2) Then determine for each electron the screening contributions due to all the 
other electrons snl . Then Zeff = Z-snl for that electron.  
(3) Once you have Zeff you also have the wavefunctions: 
 Ψ( ri , θi , φi ) = F(r i) ⋅Ylm(θi , φi) for each electron,  
and for the Be atom the wavefunction is a product of four such functions.  
(4) Having this, it is trivial to evaluate the desired average value by using Postulate 
3: 



〈χd 〉 = ∫∫Ψ(1, 2, 3, 4)* {− (e2/3mc2) ½ ri 
2 } Ψ(1, 2, 3, 4) dτ1dτ2 dτ3 dτ4   

i

N

=
∑

1

This works out into 
 − (e2/3mc2) ½ { 
 ∫∫Ψ(1)*r1

2 Ψ(1)dτ1⋅∫∫Ψ(2)*Ψ(2)dτ2⋅∫∫Ψ(3)*Ψ(3)dτ3⋅∫∫Ψ(4)*Ψ(4)dτ4 + 
∫∫Ψ(1)*Ψ(1)dτ1⋅∫∫Ψ(2)* r2

2 Ψ(2)dτ2⋅∫∫Ψ(3)*Ψ(3)dτ3⋅∫∫Ψ(4)*Ψ(4)dτ4 + 
∫∫Ψ(1)*Ψ(1)dτ1⋅∫∫Ψ(2)*Ψ(2)dτ2⋅∫∫Ψ(3)* r3

2 Ψ(3)dτ3⋅∫∫Ψ(4)*Ψ(4)dτ4 + 
∫∫Ψ(1)* Ψ(1)dτ1⋅∫∫Ψ(2)*Ψ(2)dτ2⋅∫∫Ψ(3)*Ψ(3)dτ3⋅∫∫Ψ(4)* r4

2 Ψ(4)dτ4 } 
=  − (e2/3mc2) ½ { 
∫∫Ψ(1)*r1

2 Ψ(1)dτ1 + ∫∫Ψ(2)* r2
2 Ψ(2)dτ2 +∫∫Ψ(3)* r3

2 Ψ(3)dτ3∫∫Ψ(4)* r4
2 Ψ(4)dτ4} 

 
Given ∫ψn,l,m*r2 ψ n,l,m dτ = [n2/2Z2]⋅{ 5n2  +1- 3l(l+1)}a0

2  for H atom, we can 
evaluate all the integrals because the functions Ψ(1) etc. are hydrogen atom 
functions. 
 
Given Be atom with 4 electrons in the ground configuration  1s22s2.  
Applying Slater’s rules 
 
electron n l screening from others 

 
snl Zeff = 

Z-snl 
   1 2 3 4   

1 1 0 self 0.30 0 0 0.30 3.70 
2 1 0 0.30 self 0 0 0.30 3.70 
3 2 0 0.85 0.85 self 0.35 2.05 1.95 
4 2 0 0.85 0.85 0.35 self 2.05 1.95 

 
given ∫ψn,l,m*r2 ψ n,l,m dτ = [n2/2Z2]⋅{ 5n2  +1- 3l(l+1)}a0

2  for H atom. 
electron n l 5n2+1 

-3l(l+1) 
Zeff

2      n2     
2Zeff

2 
〈r2〉 

1 1 0 6 13.69 0.0365 0.219a0
2 

2 1 0 6 13.69 0.0365 0.219a0
2 

3 2 0 21 3.8025 0.526 11.045a0
2 

4 2 0 21 3.8025 0.526 11.045a0
2 

Then, summing up,  
〈χd〉 = 9.393×10−14 ⋅ ½ ⋅ [0.219+0.219+11.045+11.045]a0

2  = 2.63×10−30 ⋅ 

(0.219+11.045) = 29.624×10−30  cm3 per atom = 17.84×10−6  cm3 per mole 
 
A note about units of the B2 term in energy:    gauss2 = erg cm−3 


