Calculating average values for many-electron atoms
under the central field approximation

When the Hamiltonian for a many-electron atom can be written, in the central field
approximation, as

H ~-RRWLVE+ V2 + V52 + V72 +.. 3 +V(r) +V(r) +V(r3) +V(r) +...
then the problem is exactly separable, no matter how complicated the V()
expressions may be, as long as each one is a function only of the distance of the ith
electron from the nucleus, not of 6; or ¢;.
In this case then the problem

H Y@, 2 3,4,.)=EWY(, 2,3, 4,..) can be solved by solving individual one-
electron problems:
{~ (@RWVE+VE)PP(ri, 6, ¢i) = Ei (1, 6, ¢i.)
Since the only 6; , ¢; dependence is in V;? then each one-electron problem to be
solved can be solved by separation of the variables 6;, ¢; leading to the same
solutions as for the hydrogen atom itself, namely the same quantum numbers ¢ and
m and the same functions Y ,(6; , ¢;) arise in precisely the same way as for the
hydrogen atom. The only difference is that the remaining differential equation inr
to be solved :
{ P12)[&%1or + (2Ir) dlor;+ £(0+1) 1% +V(r)} F(ri) = E; F(ry)

is different from that in the hydrogen atom in that here, V/(r ;) = —Ze’/r;
This means that the functions F(r;) = Rn,(r).
Nevertheless, a simple product function W(ri, 6, ¢i) = F(ri) -Y,m(6i, ;) is
associated with the one-electron energy E ;. This also means that the many
electron functions can be written as simple products (to be antisymmetrized later)

\P(l, 2, 3, 4, ) = ‘P(rl, 91 , (|)1)°"P(r2, 92 , q)z)'\I’(rg, 93 , (I)g)"P(M, 94 , (|)4)
which is represented by an “electronic configuration” such as 1s°2s'2p*3d?.

If the effect of all the other electrons were to reduce the nuclear charge seen by the
ith electron, from the full charge Z down to Z.«" then, the many-electron problem
separates into

{ P12u)[&%or? + (2Ir;) dlor,+ L(0+1) 1% ] —Zes i 3 F(ri) = E; F(ry)
each one of which is a hydrogen atom with Z.«" appearing everywhere Z used to
be. This means that F(r;) = R,,(r;), just as for the hydrogen atom, and all the
wavefunctions that we found for the hydrogen atom are the same ones as for each
electron in the many-electron atom. Because of this, the one-electron energies are
Ei = —(Zes In)? (€°/2a0) and all the one-electron operators Op which can be



expressed in terms of r; can be obtained from the integrals derived for the
hydrogen atom, for example the average value:

((rlag)®y = (n*2Z°)[Bn* +1 -3 ¢(1+1)]
Clementi and Raimondi, for example, provide tables of [Z." /n ] for each electron
in the ground configuration of atoms He up to Kr. [E. Clementi and D. L.
Raimondi, J. Chem. Phys. 38, 2686 (1963)] Of course, these only apply to that
particular configuration. Clearly the amount of effective screening by the other
electrons depends on which types of functions describe their probability
distribution in space.
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TasLe I. Best values of £ for the ground state of neutral atoms.®

z 1s 25 2p 3s 3p 4s 3d 4p
2. 1.6875
3. 2.6906 0.6396
4 3.6848 0.9560
5 4.6795 1.2881 1.2107
6 5.6727 1.6083 1.5679
i 6.6651 1.9237 1.9170
8 7.6579 2.2458 2.2266
9. 8.6501 2.5638 2.5500
10. 9.6421 2.8792 2.8792
11. 10.6259 3.2857 3.4009 0.8358
12. 11.6089 3.6960 3.9129 1.1025
13. 12.5910 4.1068 4.4817 1.3724 1.3552
14, 13.5745 4.5100 4.9725 1.6344 1.4284
15. 14.5578 4.9125 5.4806 1.8806 1.6288
16. 15.5409 5.3144 5.9885 2.1223 1.8273
17. 16.5239 5.7152 6.4966 2.3561 2.0387
18. 17.5075 6.1152 7.0041 2.5856 2.2547
19, 18.4895 6.5031 7.5136 2.8033 2.5752 0.8738
20. 19.4730 6.8882 8.0207 3.2005 2.8861 1.0995
21. 20.4566 7.2868 8.5273 3.4466 3.1354 1.1581 2,3733
22. 21.4409 7.6883 9.0324 3.6777 3.3679 1.2042 2.7138
23. 22.4256 8.0907 9.5364 3.9031 3.5950 1.2453 2.9943
24. 23.4138 8.4919 10.0376 4.1226 3.8220 1.2833 3.2522
25. 24.3957 8.8969 10.5420 4,3393 4.0364 1.3208 3.5004
26. 25.3810 9.2995 11.0444 4.5587 4.2593 1.3585 3.7266
27. 26.3668 9.7025 11.5462 4.7741 4.4782 1.3941 3.9518
28. 27.3526 10.1063 12.0476 4,9870 4.6950 1.4277 4.1765
29. 28.3386 10.5099 12.5485 5.1981 4.9102 1.4606 4.4002
30. 29.3245 10.9140 13.0490 5.4064 5.1231 1.4913 4.6261
31. 30.3094 11.2995 13.5454 5.6654 5.4012 1.7667 5.0311 1.5554
32. 31.2937 11.6824 14.0411 5.9299 3.6712 2.0109 5.4171 1.6951
33. 32.2783 12.0635 14.5368 6.1985 5.9499 2.2360 5.7928 1.8623
34. 33.2622 12.4442 15.0326 6.4678 6.2350 2.4394 6.1590 2.0718
3s. 34.2471 12.8217 15.5282 6.7395 6.5236 2.6382 6.5197 2.2570
36. 35.2316 13.1990 16.0235 7.0109 6.8114 2.8289 6.8753 2.4423

® States are the same as given in Table IIL



In the Slater approximation, the Hamiltonian is taken to be of the form
H ~- (h2/2u){V12 + sz + V32 + V42 +} —Zeff(l)ezlrl —Zeff(z)ezlrz —Zeff(s)ezlr3
—Zei e, ...
Since the Z.«" are constants, although each is different from Z itself, the many-
electron problem separates into

{ (RP12w)[61or? + (2Ir) olor+ (0+1) ri®] —Zese%Iri Y F(ri) = E; F(r))
each one of which is a hydrogen atom with Z.«" appearing everywhere Z used to
be. This means that F(r;) = R,,(r;), just as for the hydrogen atom, and all the
wavefunctions that we found for the hydrogen atom are the same ones as for each
electron in the many-electron atom under the Slater approximation. Because of
this, the one-electron energies are E ; = —(Zes" /n;)* (€%/2a,) and all the one-electron
operators Op which can be expressed in terms of r;can be obtained from the
integrals derived for the hydrogen atom, for example, given
[Wn,m*r2 W o,m dt = [n%2Z7]-{ 5n* +1- 3¢(¢+1)} for H-like atom.
the average value:

((rfag)®y = (n*2Z3)[Bn* +1 -3 ¢((+1)]

Slater’s rules:
1.  S15=0.30

2. For electronswithn>1and /=0, 1

Snf - O.35ksame + 0.85k|n + 1.00kinner

where

Ksame = Number of other electrons in the same shell as the screened
electron of interest

ki, = number of electrons in the shell with principal quantum
number n-1

Kinner = Number of electrons in the shell with principal guantum
number n-2

3. For 3d electrons

S3q = 0.35k34 + 1.00k;,

where
ksy = number of 3d electrons

Ki, = number of electrons withn<3and ¢ < 2



Example: Energy Calculations

Problem: The electron transfer that occurs when a Li* and a H™ ion are formed
from a Li atom and a H atom leads to the formation of LiH. Using Slater’s rules,
derive an expression for the calculation of the energy change that is involved
when this occurs. Is the energy evolved or absorbed in this chemical reaction? Do

the calculations, giving your answer in eV.

Using Slater’s rules,
Li Z =3, electronic configuration: 1s°2s

electron n / screening from others Sny Z-Sy,
1 2 3
1 1 0 self 0.30 0 0.30 2.70
2 1 0 0.30 self 0 0.30 2.70
3 2 0 0.85 0.85 self 1.70 1.30
Li* Z = 3, electronic configuration: 1s
electron n / screening from others Sny Z-Sn,
1 2
1 1 0 self 0.30 0.30 2.70
2 1 0 0.30 self 0.30 2.70
H - Z =1, electronic configuration: 1s°
electron n / screening from others Sns Z-Sy,
1 2
1 1 0 self 0.30 0.30 0.70
2 1 0 0.30 self 0.30 0.70

Energy = - {Z«(i)/ni}* (€°/2a,) for each electron

Before: Li + H

Energy for Li = -13.6 eV-{2-[2.70/1]* + [1.30/2]*}
Energy for H = -13.6 eV-{[1/1]*}

Total energy = -13.6 eV-{15.00 + 1}

After: Li" + H ~
Energy for Li* = -13.6 eV-{2- [2.70/1]" }




Energy for H = -13.6 eV-{2- [0.70/1]°}

Total energy = -13.6 eV-{14.58 + 0.98}

Energy difference = Egfter - Epefore = -13.6 €V{ 15.56 - 16 } = +5.98 eV

Although Egfer is higher than Eperore , the reaction produces charged particles which
have Coulomb interaction energy equal to {- ezlrLiH} at the separation ryjy .

Example: Diamagnetic susceptibility of a many-electron atom:
Problem: When an atom is placed in a magnetic field, the magnetic field induces a
magnetic moment in the atom. The energy term in this case is proportional to the
square of the applied magnetic field and the proportionality constant is called the
magnetic susceptibility. The magnetic susceptibility, y, is diamagnetic unless the
atom has unpaired electrons.The diamagnetic susceptibility contributes to the
susceptibility of all molecules. % has the following operator (for an atom having
N electrons):

N

op = - (€43mc) %Y 1°.

i=1
Derive the method by which it will be possible to calculate the diamagnetic
susceptibility x* (in units of cm®per atom or molecule) of a single Be atom in its
ground state, using Slater’s rules. Carry out the numerical computations. The
answer should be very small; to get the observed molar magnetic susceptibility one
has to multiply this by Avogadro’s number. The quantity (e/3mc?) is 9.393x10**
cm and ag= 0.529167 x 107 cm .

Solution:
v has the following operator (for an atom having N electrons):
N
op =— (€°/3mc®) %> 2.
i=1

Calculate (xd ) for the ground state of the Be atom Z=4.

How to do it:

(1) First determine the electronic configuration for the ground state.

(2) Then determine for each electron the screening contributions due to all the
other electrons s,,. Then Z = Z-s,, for that electron.

(3) Once you have Z.Yyou also have the wavefunctions:

Y(ri, 6i, ¢i) =F(ri) -Y,m(6;, ¢;) for each electron,

and for the Be atom the wavefunction is a product of four such functions.

(4) Having this, it is trivial to evaluate the desired average value by using Postulate
3:



Oy =W, 2, 3, 4)* {- (e%/3mc?) 1/22 2} W, 2, 3, 4) drydr, dts dis

This works out into

— (e°/3mc?) ¥z {

1 (1)1, W(1)dre-[[W(2)* W (2)dop- I (3)* ¥ (3)dra-[[W (4)* W (4) s +

Q) P(1)dt- TP 2)* 1,° P(2)dto-[[P(3)*W(3)da: [P (4)*P(4)d, +

Q) P(1)dt,- ¥ (2)* ¥ (2)dt [P (3)* 12° W(3)dra [[P(4)*P(4)dr, +

TP @)* P(Q)de PP (2)du ¥ (3)*¥(3)dte [IW(4)* 1, W(4)dus }

= — (e°/3mc®) 2 {

P@Q)*r,2 P(Q)dt, + [[P2)* 1,2 ¥ (2)dt, +H[P(3)* r:° P(3)dral[P(4)* 1> W(4)dr,}

Given [y, m*r* o, m dt = [n%2Z%]-{ 5n* +1- 3¢(/+1)}ay" for H atom, we can
evaluate all the integrals because the functions W(1) etc. are hydrogen atom
functions.

Given Be atom with 4 electrons in the ground configuration 1s°2s>.
Applying Slater’s rules

electron| n | ¢ screening from others Sny Zett =
Z-Sp,
1 2 3 4
1 1|0 | self 0.30 0 0 0.30 | 3.70
2 10| 0.30 self 0 0 0.30 | 3.70
3 2|1 0] 085 | 0.85 self 0.35 | 205 | 1.95
4 21 0] 085 | 0.85 | 0.35 self 2.05 | 1.95
given [ywn,m*r* W n,m dt = [n%2Z°]-{ 5n° +1- 3¢(¢+1)}a,> for H atom.
electron | n | ¢ | 5n°+1 Zett” n° )
-30(0+1) 2Zi
1 110 6 13.69 0.0365 0.219ay°
2 110 6 13.69 0.0365 0.219ay°
3 210 21 3.8025 0.526 11.045a,°
4 2 10 21 3.8025 0.526 | 11.045a,°

Then, summing up,
(x%) = 9.393x107™. 1 . [0.219+0.219+11.045+11.045]a,> = 2.63x107>° .
(0.219+11.045) = 29.624x107*° cm? per atom = 17.84x10°® cm? per mole

A note about units of the B? term in energy: gauss® = erg cm™>



