1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUMMECHANICS
5. ELECTRONIC STRUCTURE OF ATOMS
5.1 The central field approximation and the Periodic Table
5.2 Consequences of the Indistinguishability of Electrons and the Electron Spin
5.3 Coupling of Angular Momenta
5.3.1 Spin-Orbit Coupling
5.3.2 How to Represent the Eigenfunctions
for a System in which two AngularMomenta are Coupled?
5.4 Electronic States of Atoms, Term Symbols,
The Ground States of Atoms, Hund's Rules
5.5 Atomic Spectra of Light Atoms, e.g., Na

ELECTRONIC STRUCTURE OF ATOMS The many-electron atom problem:

The Hamiltoxian for an N -electron atom

$$
\text { If }=\frac{-\hbar^{2}}{2 m_{\text {mic }}} \nabla_{\text {muc }}^{2}-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla_{\text {elec }}^{2}+\nabla_{\text {elec }}^{2}+\cdots+\nabla_{\text {elec }}^{2}\right)
$$

$+V$ (nuc, elec, elec, \cdots eles $)$
where all coorthinates are Nith ruspeot to an anbitiavily chowen wrigins 和ch as the coines of the laboratom room.
First, sepanase out the translational motion.

$$
I t=I f_{\text {trans1 }}+\mathcal{H}_{\substack{\text { internal } \\ \text { notion }}}
$$

$$
\text { There } t_{\text {trauld }}=\frac{-\hbar^{2}}{2\left(m_{\text {muc }}+N m_{e}\right)} \nabla_{c m}^{2}
$$

$$
\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial y_{3}^{2}}+\frac{x^{2}}{\partial z_{3}^{2}}
$$

To whe x_{3}, y_{3}, z_{3} is relat
tonclemo arain

$$
\mathcal{H}_{\text {internal }}=\frac{-\hbar^{2}}{2 \mu}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}+\cdots+\nabla_{N}^{2}\right)+V\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{N}\right)
$$

and total wanefunotion $=F\left(x_{\text {om }}\right) \cdot G\left(Y_{C_{m}}\right) \cdot Q\left(Z_{c m}\right) \cdot \underbrace{\Psi\left(\vec{r}_{1}, \vec{r}_{2},-\vec{r}_{\nu}\right)}$
deccribe t-andational motion desention
9. centin s mave crith respect to imturnal cocnew g lab
Now we need to polve $H_{\substack{\text { inturnal } \\ \text { motion }}}^{\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots \vec{r}_{N}\right)=E \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots \vec{r}_{N}\right)}$
wrike out all of $V\left(\vec{r}_{1}, \vec{r}_{2}, \cdots \hat{r}_{N}\right)$ vector

$$
\begin{aligned}
& \mathcal{H}_{\substack{\text { intannal } \\
\text { motion }}}=\frac{-\hbar^{2}}{2 \mu}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\cdots+\nabla_{N}^{2}\right)-\frac{Z_{e}^{2}}{r_{1}}-\frac{z_{e}^{2}}{r_{2}}-\frac{Z_{e}^{2}}{r_{3}} \cdots \cdot \frac{Z_{e}^{2}}{r_{N}} \\
& +\frac{e^{2}}{r_{12}}+\frac{e^{2}}{r_{13}}+\frac{e^{2}}{r_{23}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { 䯧 one electorn } \\
& \text { in the Coulomst. } \\
& \text { fielt os a proiture } \\
& \text { (ty) ehange ot } \\
& \text { a Cential fíl }{ }^{2} \text {. } \\
& \text { Be. the Hydenagervaline! } \\
& \text { atom. }
\end{aligned}
$$

This pras is Completely sepanable into N little problems eace one is a hydogen-
Use the 'central ficld approximation':
$\left.\begin{array}{c}\text { That is, replace } \\ V\left(\vec{r}_{1}, \vec{r}_{2}, \cdots \vec{r}_{N}\right)\end{array}\right)=\sum_{i=1}^{N} \frac{-z_{e}^{2}}{r_{i}}+\sum_{i, j} \sum_{i>j} \frac{e^{2}}{r_{i j}}$ with $\sum_{i=1}^{N} V\left(r_{i}\right)$
whene $V\left(r_{3}\right)$ inchudes integrals oon the electran. distributions of electons $1,2,4,5,6, \ldots N$, ince itis

polectival energy the isth field an in the central field created by the +te tot he coles ard the total charge distribution of all the other $(N-1)$ elections
is completely separable into N little problems, cachore of which can be solved only when all the other are also solved.
solutions are product functions, each one looks like $\psi\left(r_{3}, \theta_{3}, \phi_{3}\right)=F\left(r_{3}\right) \cdot Y_{l n}\left(\theta_{3}, \phi_{3}\right)$ an 'orbital' found by solving $\left(\frac{-\hbar^{2}}{2 n} \frac{\nabla_{3}^{2}}{2}-V\left(r_{3}\right)\right) \psi\left(r_{3}, \theta_{3}, \phi_{3}\right)=E \psi\left(r_{3}, \theta_{3}, \phi_{3}\right)$

We have solved this before, separating oust ${ }^{\circ}$, then a pants, with neaults $Y_{\text {lon }}\left(\frac{t}{3}, \frac{1}{3}\right)$, leaving the

$$
\frac{\left\{\frac{-\hbar^{2}}{3 \mu} \frac{1}{r_{3}} \frac{\partial z}{\partial r_{3}^{2}} r_{3}+\frac{l_{3}\left(l_{3}+1\right) \hbar^{2}}{3 \mu r_{3}^{2}}-V\left(r_{3}\right)\right\} F\left(r_{3}\right)}{F\left(r_{3}\right)}=\epsilon
$$

This radial equation has to be solved at the same time as all the othea radial equation for 1 in electrons in $r_{1}, r_{2}, r_{4}, r_{5}, \cdots r_{N}$ since $V\left(r_{3}\right)$ contains in it $\psi^{*} \psi\left(r_{1}, \theta_{1}, \phi_{1}\right), \psi^{*} \psi\left(r_{2}, \theta_{1}, \phi_{2}\right)$, etc.

The self-consistent field thenefor leads to a total wavefunction for all Selections which can be witter in terms of simple products of one-election function o ('orbitals)
such ae $\psi_{180}(1) \cdot \psi_{100}(2) \cdot \psi_{200}(3) \cdot \psi_{200}(4) \quad 15^{2} 25^{2}$
or $\psi_{100}(1) \cdot \psi_{100}(2) \cdot \psi_{210}^{(3)} \psi_{534}(4)$ or whatever $15^{2} 2 p_{0} 5 f_{1}$

quantum number. just as in the true hydiogen-like atom tut only one dectron angular momentirn functions just as in the true hydiogen-likcetom with only are election
However, the $F(r)$ can be very coruplicated and is not the same as the hydrogen-lice $R_{n l}(r)$. Also $F\left(r_{i}\right)$ has to be solved for each configuration, that is, for each product function. $F\left(r_{1}\right)$ in $1 s^{2} 2 s^{2}$ is different from the $F\left(r_{1}\right)$ in $1 s^{2} 2 p_{0} 5 f_{1}$.

The intrinsic ('spin') angular momentum of an electron imposes conditions on how many of the N electors in an atom are permitted to have the same $F\left(r_{i}\right) \cdot Y_{(}\left(\theta_{i}, \phi_{i}\right)$ function. $n_{i l_{i}^{i}} \quad l_{i} m_{i}^{\prime}$

A many-electron atom

Using the central field approximation:

$$
V \approx V\left(r_{1}\right)+V\left(r_{2}\right)+V\left(r_{3}\right)+\ldots
$$

no matter how complex a numerical or functional form each $V\left(r_{i}\right)$ may have.

It follows that,

$$
\mathcal{H}(1,2, \ldots) \approx \mathscr{H}(1)+\mathcal{H}(2)+\mathcal{H}(3)+\ldots
$$

where

$$
\mathcal{H}(1)=-\left(\hbar^{2} / 2 \mu\right) \nabla_{1}^{2}+\mathrm{V}\left(\mathrm{r}_{1}\right)
$$

which results in solutions of the type

$$
\Psi(1)=F_{\ell}\left(r_{1}\right) \cdot Y_{\ell m}\left(\theta_{1}, \phi_{1}\right)
$$

an "orbital", a one-electron function and $\varepsilon(1)$
but $F_{\ell}\left(r_{1}\right)$ is not necessarily of the form $R_{n \ell}\left(r_{1}\right)$ and $\varepsilon(1)$ is not of the form $-\left(\mathrm{Z}^{2} / \mathrm{n}^{2}\right)\left(\mathrm{e}^{2} / 2 \mathrm{a}_{0}\right)$ since $V\left(r_{1}\right)$ is not of the form $-Z e^{2} / r_{1}$.

Consequences of separability and central field approximation:

Permits use of the following :

- for each electron an "atomic orbital":
quantum numbers ℓ and m_{ℓ}
and the functions $\mathrm{Y}_{\ell \mathrm{m}}\left(\theta_{1}, \phi_{1}\right)$.
- for the whole atom a product of atomic orbitals (one-electron functions):

$$
\Psi(1,2,3,4, \ldots)=\Psi(1) \bullet \Psi(2) \bullet \Psi(3) \bullet \ldots
$$

and the energy eigenvalue a sum of orbital energies

$$
\mathrm{E}_{\text {total }}=\sum_{i} \varepsilon(i)
$$

But correlation of electronic motions is left out.

More drastic approximations permit simple calculations.
a) Wee an effective charge for each electron That is, replace $V\left(r_{3}\right)$ by $-\frac{z_{y y_{0}}(3) e^{2}}{r_{3}}$
Each $Z_{\text {eff }}(i)$ is different and a set $g Z_{\text {ep }}(i)$ is only good for a given electric configmation. See table of values by Clement + Raimonbi.
b) Use an ejective charge for each election That is, replace $V(3)$ by $-z_{y p}(3) \frac{e^{2}}{r_{3}}$ For a given electronic configuration, obtain an approximate Zest (i) for each electron by Mooing one sining le ret of rule (Slater's rules) Use gan effective change for each Reflector. lead to

$$
\mathcal{H}_{\substack{\text { internal } \\ \text { motion }}} \sum_{i=1}^{N}\left\{-\frac{\hbar^{2}}{2 \mu} \nabla_{i}^{2}-z_{y \beta}(i) \frac{e^{2}}{r_{i}}\right\}
$$

which has the virtue of being exactly reparable into hydragn-like one-electron scoffing unctions, which we have

and function's

$$
\begin{aligned}
& \text { functions } \\
& \psi\left(r_{i}, \theta_{i}, \phi_{i}\right)=R_{n_{i} \ell_{i}}\left(r_{i}\right) \cdot Y_{l_{i} m_{i}}\left(\theta_{i} \phi_{i}\right) \\
& \text { where } z
\end{aligned}
$$

where Z^{7} is replaced $l_{i m} z_{\nu}(i)$ in the came radial functions or or Hater.

Table 4.9 Best values of ζ for the ground state of neutral atomsa $\quad \zeta=\frac{Z}{n}$ eff

	Z	$1 s$	23	$2 p$	$3 s$	$3 p$	$4 s$	$3 d$	$4 p$
He	2	1.6875							
Li	3	2.6906	0.6396						
Be	4	3.6848	0.9560						
B	5	4.6795	1.2881	1.2107					
C	6	5.6727	1.6083	1.5679					
N	7	6.6651	1.9237	1.9170					
0	8	7.6579	2.2458	2.2266					
F	9	8.6501	2.5638	2.5500					
Ne	10	9.6421	2.8792	2.8792					
Na	11	10.6259	3.2857	3.4009	0.8358				
Mg	12	11.6089	3.6960	3.9129	1.1025				
Al	13	12.5910	4.1068	4.4817	1.3724	1.3552			
Si	14	13.5745	4.5100	4.9725	1.6344	1.4284			
P	15	14.5578	4.9125	5.4806	1.8806	1.6288			
S	16	15.5409	5.3144	5.9885	2.1223	1.8273			
Cl	17	16.5239	5.7152	6.4966	2.3561	2.0387			
Ar	18	17.5075	6.1152	7.0041	2.5856	2.2547			
K	19	18.4895	6.5031	7.5136	2.8933	2.5752	0.8738		
Ca	20	19.4730	6.8882	8.0207	3.2005	2.8861	1.0995		
Sc	21	20.4566	7.2868	8.5273	3.4466	3.1354	1.1581	2.3733	
Ti	22	21.4409	7.6883	9.0324	3.6777	3.3679	1.2042	2.7138	
V	23	22.4256	8.0907	9.5364	3.9031	3.5950	1.2453	2.9943	
Cr	24	23.4138	8.4919	10.0376	4.1226	3.8220	1.2833	3.2522	
Mn	25	24.3957	8.8969	10.5420	4.3393	4.0364	1.3208	3.5094	
Fe	26	25.3810	9.2995	11.0444	4.5587	4.2593	1.3585	3.7266	
Co	27	26.3668	9.7025	11.5462	4.7741	4.4782	1.3941	3.9518	
Ni	28	27.3526	10.1063	12.0476	4.9870	4.6950	1.4277	4.1765	
Cu	29	28.3386	10.5099	12.5485	5.1981	4.9102	1.4606	4.4002	
Zn	30	29.3245	10.9140	13.0490	5.4064	5.1231	1.4913	4.6261	
Ga	31	30.3094	11.2995	13.5454	5.6654	5.4012	1.7667	5.0311	1.5554
Ge	32	31.2937	11.6824	14.0411	5.9299	5.6712	2.0109	5.4171	1.6951
As	33	32.2783	12.0635	14.5368	6.1985	5.9499	2.2360	5.7928	1.8623
Se	34	33.2622	12.4442	15.0326	6.4678	6.2350	2.4394	6.1590	2.0718
Br	35	34.2471	12.8217	15.5282	6.7395	6.5236	2.6382	6.5197	2.2570
Kr	36	35.2316	13.1990	16.0235	7.0109	6.8114	2.8289	6.8753	2.4423

[^0]$$
Z_{\text {Pf }}(i)=Z-s_{\lambda}
$$

Clementi-Raimadi rules for
atoms from He through Kr . The equations obtained by Clementi and Raimondi are

$$
\begin{aligned}
s_{1 s}= & 0.3[N(1 s)-1]+0.0072[N(2 s)+N(2 p)] \\
& +0.0158[N(3 s)+N(3 p)+N(4 s)+N(3 d)+N(4 p)] \\
s_{2 s}= & 1.7208+0.3601[N(2 s)+N(2 p)-1] \\
& +0.2062[N(3 s)+N(3 p)+N(4 s)+N(3 d)+N(4 p)] \\
s_{2 p}= & 2.5787+0.3326[N(2 p)-1]-0.0773 N(3 s) \\
& -0.0161[N(3 p)+N(48)]-0.0048 N(3 d)+0.0085 N(4 p) \\
s_{20}= & 8.4927+0.2501[N(3 s)+N(3 p)-1]+0.0778 N(4 s) \\
& +0.3382 N(3 d)+0.1978 N(4 p) . \\
s_{z p}= & 9.3345+0.3803[N(3 p)-1]+0.0526 N(4 s) \\
& +0.3289 N(3 d)+0.1558 N(4 p) \\
s_{40}= & 15.505+0.0971[N(4 s)-1]+0.8433 N(3 d) \\
& +0.0687 N(4 p) \\
s_{z d}= & 13.5894+0.2693[N(3 d)-1]-0.1065 N(4 p) \\
s_{4 p}= & 24.7782+0.2905[\dot{N}(4 p)-1]
\end{aligned}
$$

$Z_{f f}(i)=Z-s_{i}$

Slater's rules:

1. $s_{1 \mathrm{~s}}=0.30$
2. For electrons with $\mathrm{n}>1$ and $\ell=0,1$
$\mathrm{s}_{\mathrm{n} \ell}=0.35 \mathrm{k}_{\mathrm{same}}+0.85 \mathrm{k}_{\mathrm{in}}+1.00 \mathrm{k}_{\text {inner }}$
where
$\mathrm{k}_{\text {same }}=$ number of other electrons in the same shell as the screened electron of interest
$k_{\text {in }}=$ number of electrons in the shell with principal quantum number $\mathrm{n}-1$
$k_{\text {inner }}=$ number of electrons in the shell with principal quantum number n-2
3. For 3d electrons
$\mathrm{s}_{3 \mathrm{~d}}=0.35 \mathrm{k}_{3 \mathrm{~d}}+1.00 \mathrm{k}_{\mathrm{in}}$
where
$k_{3 d}=$ number of $3 d$ electrons
$\mathrm{k}_{\mathrm{in}}=$ number of electrons with $\mathrm{n} \leq 3$ and $\ell<2$

$$
\begin{aligned}
\left\langle r^{2}\right\rangle & =\int_{0}^{\infty} R_{n l}(r)^{*} r^{2} R_{n l}(r) r^{2} d r \quad \text { for a hydrogen- } \\
& =\frac{n^{2}}{2 z^{2}}\left[5 n^{2}+1-3 l(l+1)\right] a_{0}^{2} \\
& =\frac{1^{2}}{2 z^{2}}\left[5 l^{2}+1-0\right] a_{0}^{2}=\frac{3}{z^{2}} a_{0}^{2} \quad \text { for grower atom }
\end{aligned}
$$

$\alpha \approx \frac{4 a_{0}^{3}}{Z^{4}} \quad$ Exact annemer is $\left(\frac{q}{2}\right) \frac{a_{0}^{3}}{Z^{4}}$
if ware ionization
of ware ionization $\overline{\Delta E} \approx \frac{Z^{2}}{n^{2}} \frac{e^{2}}{2 d_{0}}$
For many-lection atoms, need to sum
$\left\langle r^{2}\right\rangle_{i}$ for each electron ouch, all the elsetrons in the atom $\zeta_{i} \equiv\left(Z_{i} / n_{i}\right) \quad Z_{i}^{\prime}=$ effective. change for the eth electron.

$$
E_{i} \approx-S_{i}^{2} \frac{e^{2}}{2 a_{0}}
$$

$$
\overline{\Delta E_{i}} \approx \rho_{i}^{2} \frac{e^{2}}{29_{B}}
$$

$$
\alpha \approx \frac{2}{3} e^{2} \sum_{i} \frac{\left\langle r^{2}\right\rangle_{i}}{(\overline{\Delta E})_{i}} \approx \sum_{i}^{a l l e l e c t r a r s} \frac{\left(2 n_{i}+2\right)\left(2 n_{i}+1\right) a_{0}^{3}}{\varphi_{i}^{4}}
$$

$$
\int_{i \cdot n_{i}}^{R_{n_{i}}}\left(r_{i} \approx\left[\frac{\left(2 \xi_{i} / a_{0}\right)^{2 n_{i}+1}}{\left(2 n_{i}\right)!}\right]^{1 / 2}{\frac{r_{i}}{i}-1} e^{-s_{i}} \frac{r_{i}}{a_{0}}\right.
$$

(A) $(\theta) \cdot \Phi(\phi) \quad \begin{array}{r}\text { Slater-type atone } \\ \text { orbitals }\end{array}$ elcotrer.
first ionization energy minimum energy required to remove an electron from the neutral gaseous atom (or molecule)
Ca^{+}from Ca $589.81 \mathrm{~kJ} / \mathrm{mol}$
Ca^{2+} from Ca $1734.80 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{Ca}^{\underline{2+}}(\mathrm{g})+\mathrm{e}-\mathrm{E}\left(\mathrm{Ca}^{2+}\right)$

$$
I E_{2}=1145.0 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\begin{aligned}
& \uparrow \quad \mathrm{Ca}^{ \pm}(\mathrm{q})+\mathrm{e}-\mathrm{E}\left(\mathrm{Ca}^{+}\right) \\
& I E_{1}=589.81 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{E} \quad \mathrm{Ca}_{(\mathrm{g})} \quad \mathrm{E}(\mathrm{Ca}) \\
& I E_{1}=\mathrm{E}\left(\mathrm{Ca}^{+}\right)-\mathrm{E}(\mathrm{Ca}) \\
& I E_{2}=\mathrm{E}\left(\mathrm{Ca}^{2+}\right)-\mathrm{E}\left(\mathrm{Ca}^{+}\right)
\end{aligned}
$$

electron affinity energy released when an electron is added to an atom or molecule

$$
\underline{C l}_{(\mathrm{q})}+\mathrm{e}-\quad \mathrm{E}(\mathrm{Cl})
$$

$E \quad \mathrm{Cl}_{(\mathrm{g})}^{-} \quad \mathrm{E}\left(\mathrm{Cl}^{-}\right)$
$E A=E(C l)-E(C l)$.
$E A$ is positive or negative, depending on which is lower in energy, the neutral atom or the negative ion:

Note that the definitions of $I E$ and $E A$ appear to be opposite,

$$
\begin{aligned}
& I E_{1} \equiv \mathrm{E}(+ \text { ion })-\mathrm{E}(\text { neutral }) \\
& E A \equiv \mathrm{E}(\text { neutral })-\mathrm{E}(- \text { ion })
\end{aligned}
$$

but the energy change is associated with electron detachment process in both cases, with the energy difference IE and EA being defined for the neutral atom

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUM
MECHANICS
5. ELECTRONIC STRUCTURE OF ATOMS
5.1 The central field approximation and the Periodic Table
5.2 Consequences of the Indistinguishability of Electrons and the Electron Spin
5.3 Coupling of Angular Momenta
5.3.1 Spin-Orbit Coupling
5.3.2 How to Represent the Eigenfunctions
for a System in which two Angular
Momenta are Coupled?
5.4 Electronic States of Atoms, Term Symbols,
The Ground States of Atoms, Hund's Rules
5.5 Atomic Spectra of Light Atoms, e.g., Na

Two more complications that arise are - the indistinguishability of electrons - the electron spin. These are intimately connected. Let us proceed at two levels:

Level I: Electrons have spin and are indistinguishable but we neglect coupling of angular momenta (spin-orbit coupling)

Level II: Include spin-orbit coupling

Fundamental particles have intrinsic angular momentum ("spin").

Examples:
$\mathrm{s}=1 / 2$ for electrons, neutrons and protons. $I=1$ for deuteron, $I=1 / 2$ for ${ }^{19} \mathrm{~F}$ nucleus, $\mathrm{I}=3 / 2$ for ${ }^{35} \mathrm{Cl}$ nucleus.
fermions $=$ particles with half-integer spins obey Fermi-Dirac statistics
bosons $=$ particles with integer (and 0) spins obey Bose-Einstein statistics

Pauli exclusion principle states:

The total wavefunction of a physical system must be ANTISYMMETRIC with respect to interchange of any two indistinguishable fermions and also SYMMETRIC with respect to interchange of any two indistinguishable bosons.

Consequences of indistinguishability of particles in a system:

Example, non-interacting indistinguishable particles of mass M live on a circle of radius R :

$$
\mathcal{H}(1,2, \ldots)=\mathcal{H}(1)+\mathcal{H}(2)+\mathcal{H}(3)+\ldots
$$

where $\mathcal{H}(1)=-\left(\hbar^{2} / 2 \mathrm{MR}^{2}\right)\left(\partial^{2} / \partial \phi_{1}{ }^{2}\right)$ solutions are $\Phi_{\mathrm{k} 1}(1)=(2 \pi)^{-1 / 2} \exp \left[i \mathrm{k}_{1} \phi_{1}\right]$ where $\mathrm{k}_{1}=0, \pm 1, \ldots$ $\varepsilon(1)=k_{1}{ }^{2} \hbar^{2} / 2 M R^{2}$
so that for the system,
$\Psi(1,2,3,4, \ldots)=\Phi_{k 1}(1) \bullet \Phi_{\mathrm{k} 2}(2) \bullet \Phi_{\mathrm{k} 3}(3) \bullet \ldots$

$$
\mathrm{E}=\sum_{i} \mathrm{k}_{i}^{2} \hbar^{2} / 2 \mathrm{MR}^{2}
$$

Indistinguishability means that for the state where the quantum numbers are $0,-1,2,-3$ and the energy is $\hbar^{2} / 2 \mathrm{MR}^{2}\left(0^{2}+1^{2}+2^{2}+3^{2}\right)$,
$\Psi(1,2,3,4)=\Phi_{0}(1) \bullet \Phi_{-1}(2) \bullet \Phi_{2}(3) \bullet \Phi_{-3}(4)$ is not distinguishable from
$\Psi(1,2,3,4)=\Phi_{0}(2) \bullet \Phi_{-1}(1) \bullet \Phi_{2}(3) \bullet \Phi_{-3}(4)$
$\Psi(1,2,3,4)=\Phi_{0}(4) \bullet \Phi_{-1}(3) \bullet \Phi_{2}(1) \bullet \Phi_{-3}(2)$
or any of the other 4! possibilities.
Since these functions are indistinguishable from each other, we must use a linear combination of 4 ! functions in order to have a complete description that includes indistinguishability of the particles.

Since each one is individually normalized and all possibilities are equally likely, the linear combination has to be of the form:
$\Psi^{p}(1,2,3,4)=$
$(4!)^{-1 / 2}\left\{\sum_{i j} \pm \mathcal{P}_{i j} \Phi_{0}(1) \bullet \Phi_{-1}(2) \bullet \Phi_{2}(3) \bullet \Phi_{-3}(4)\right\}$
where $\mathcal{P}_{i j}$ is the permutation operator.
\pm indicates that each term after permutation will have a coefficient that is either +1 or -1 .

The specific linear combination with a specific set of coefficients is labeled here with ${ }^{p}$.

Consequences of the particles being fermions
$\mathcal{P}_{13} \Psi^{p}(1,2,3,4)=-\Psi^{p}(1,2,3,4)$
$\mathcal{P}_{23} \Psi^{p}(1,2,3,4)=-\Psi^{p}(1,2,3,4)$
and so on, for any and all such permutations!
Consequences of the particles being bosons
$\mathcal{P}_{13} \Psi^{p}(1,2,3,4)=+\Psi^{p}(1,2,3,4)$
$\mathcal{P}_{23} \Psi^{p}(1,2,3,4)=+\Psi^{p}(1,2,3,4)$
and so on, for any and all such permutations!

Use a determinant to ensure these consequences for fermions
Let columns designate $\Phi_{0}, \Phi_{-1}, \Phi_{2}, \Phi_{-3}$ and rows designate the fermions 1,2,3,4 $\Psi^{p}(1,2,3,4)=$ $(4!)^{-1 / 2} \operatorname{det}\left|\Phi_{0}(1) \quad \Phi_{-1}(2) \Phi_{2}(3) \Phi_{-3}(4)\right|$
where det $\left|\Phi_{0}(1) \Phi_{-1}(2) \Phi_{2}(3) \Phi_{-3}(4)\right|$ means

$$
\begin{aligned}
& \left|\Phi_{0}(1) \Phi_{-1}(1) \Phi_{2}(1) \Phi_{-3}(1)\right| \\
& \Phi_{0}(2) \quad \Phi_{-1}(2) \quad \Phi_{2}(2) \quad \Phi_{-3}(2) \mid \\
& \Phi_{0}(3) \Phi_{-1}(3) \quad \Phi_{2}(3) \Phi_{-3}(3) \mid \\
& \left|\Phi_{0}(4) \Phi_{-1}(4) \Phi_{2}(4) \Phi_{-3}(4)\right|
\end{aligned}
$$

Why a determinant?

- value of det is unchanged if rows are interchanged with columns
- value of det changes sign if any two rows (or columns) are interchanged with each other - det $=0$ if all elements of one row (or column) are identical with or multiples of the corresponding elements of another row.

Recall how to expand a determinant $f(1) g(1) h(1) \mid$ $f(2) g(2) h(2)$
$f(3) g(3) h(3) \mid$
in terms of the elements of row 1, e.g.,
$=(-1)^{1+1} f(1) \times \left\lvert\, \begin{aligned} & g(2) h(2) \mid \\ & g(3) h(3) \mid\end{aligned}\right.$
$+(-1)^{1+2} g(1) \times \mid f(2) h(2)$
$|f(3) h(3)|$
$+(-1)^{1+3} h(1) \times|f(2) g(2)|$
$|f(3) g(3)|$
$=f(1) g(2) h(3)-f(1) h(2) g(3)-g(1) f(2) h(3)$
$+g(1) h(2) f(3)+h(1) f(2) g(3)-h(1) g(2) f(3)$
The normalized wavefunction $\Psi(1,2,3)$ is
$(3!)^{-1 / 2}\{f(1) g(2) h(3)-f(1) h(2) g(3)-g(1) f(2) h(3)$
$+g(1) h(2) f(3)+h(1) f(2) g(3)-h(1) g(2) f(3)\}$
Verify for yourself that $\mathcal{P}_{12} \Psi(1,2,3)=-\Psi(1,2,3)$

In general, we can represent the entire antisymmetrized function that results from expanding the determinant as
$(\mathrm{N}!)^{-1 / 2} \sum(-1)^{p} \mathcal{P} f(1) g(2) \mathrm{h}(3) \cdots \mathrm{z}(\mathrm{N})$
The operator (N ! $)^{-1 / 2} \sum(-1)^{\rho} \mathcal{P}$ is called the antisymmetrization operator, where p is the number of two-fold permutations, \mathcal{P} is the permutation operator which is a sequence of two-fold permutations.
$f(1)$ is a spin-orbital, that is, a product of a space function and a spin function, e.g., $f(1)=1 \mathrm{~s} \alpha(1)$

A determinant automatically satisfies Pauli exclusion principle for fermions.

For the electronic configuration $1 \mathrm{~s}^{2}$ for ground state of a He atom
$\Psi^{p}(1,2)=(2!)^{-1 / 2} \operatorname{det}\left|\Phi_{1 \mathrm{~s} \alpha}(1) \Phi_{1 \mathrm{~s} \mathrm{\beta}}(2)\right|$
For the electronic configuration $1 s^{2} 2 s^{2}$ for the ground state of a Be atom
$\Psi^{p}(1,2,3,4)=$
$(4!)^{-1 / 2} \operatorname{det}\left|\Phi_{1 s \alpha}(1) \Phi_{1 s \beta}(2) \Phi_{2 s \alpha}(3) \Phi_{2 s \beta}(4)\right|$

Let us examine term by term for He atom:

$$
(2!)^{-1 / 2} \quad \begin{array}{ll}
\mid \Phi_{1 s \alpha}(1) & \Phi_{1 s \beta}(1) \mid \\
\mid \Phi_{1 s \alpha}(2) & \Phi_{1 s \beta}(2) \mid
\end{array}
$$

$$
=(2!)^{-1 / 2}\left\{\Phi_{1 \mathrm{~s} \alpha}(1) \bullet \Phi_{1 \mathrm{~s} \mathrm{\beta}}(2)-\Phi_{-1 / 2 c}(1) \bullet \Phi_{1 \mathrm{~s} \alpha}(2)\right\}
$$

$$
=\Phi_{1 s}(1) \bullet \Phi_{1 s}(2) \times(2!)^{-1 / 2}\{\alpha(1) \bullet \beta(2)-\beta(1) \bullet \alpha(2)\}
$$

space
antisymmetric:
$\mathcal{P}_{12} \Phi_{1 s}(1) \bullet \Phi_{1 s}(2) \times(2!)^{-1 / 2}\{\alpha(1) \bullet \beta(2)$

$$
-\beta(1) \bullet \alpha(2)\}
$$

$=\Phi_{1 s}(2) \bullet \Phi_{1 s}(1) \times(2!)^{-1 / 2}\{\alpha(2) \bullet \beta(1)-\beta(2) \bullet \alpha(1)\}$
$=-\Phi_{1 s}(1) \bullet \Phi_{1 s}(2) \times(2!)^{-1 / 2}\{\alpha(1) \bullet \beta(2)-\beta(1) \bullet \alpha(2)\}$ \uparrow
Let us examine term by term for He atom excited state 1s2s. This could be is $\alpha 2 \mathrm{~s} \alpha$ or $1 \mathrm{~s} \beta 2 \mathrm{~s} \beta$ or $1 \mathrm{~s} \alpha 2 \mathrm{~s} \beta$ or $1 \mathrm{~s} \beta 2 \mathrm{~s} \alpha$. Each one has a different determinant.
is $\alpha 2 \mathrm{~s} \alpha$ stands for the function D_{1}
$(2!)^{-1 / 2} \quad \begin{array}{lll} & \mid \Phi_{1 s \alpha}(1) & \Phi_{2 s \alpha}(1) \mid \\ & \mid \Phi_{1 s \alpha}(2) & \Phi_{2 s \alpha}(2) \mid\end{array}$
$=(2!)^{-1 / 2}\left\{\Phi_{1 s \alpha}(1) \bullet \Phi_{2 \mathrm{ss} \alpha}(2)-\Phi_{2 \mathrm{~s} \alpha}(1) \bullet \Phi_{1 \mathrm{~s} \alpha}(2)\right\}$
$=(2!)^{-1 / 2}\left\{\Phi_{1 s}(1) \bullet \Phi_{2 s}(2)-\Phi_{2 s}(1) \bullet \Phi_{1 s}(2)\right\} \times \alpha(1) \bullet \alpha(2)$ space

Similarly

$$
\begin{array}{lll}
\mathrm{D}_{2}=(2!)^{-1 / 2} & \left|\begin{array}{ll}
\Phi_{1 s \beta}(1) & \Phi_{2 s \beta}(1) \\
& \mid \Phi_{1 s \beta}(2) \\
\Phi_{2 s \beta}(2)
\end{array}\right|
\end{array}
$$

$=(2!)^{-1 / 2}\left\{\Phi_{1 s}(1) \bullet \Phi_{2 s}(2)-\Phi_{2 s}(1) \bullet \Phi_{1 s}(2)\right\} \times \beta(1) \bullet \beta(2)$ space spin
$D_{3}=(2!)^{-1 / 2}\left\{\Phi_{1 s \alpha}(1) \bullet \Phi_{2 s \beta}(2)-\Phi_{2 s \beta}(1) \bullet \Phi_{1 s \alpha}(2)\right\}$ and
$D_{4}=(2!)^{-1 / 2}\left\{\Phi_{1 s \beta}(1) \bullet \Phi_{2 s \alpha}(2)-\Phi_{2 s \alpha}(1) \bullet \Phi_{1 s \beta}(2)\right\}$
We need to form linear combinations of D_{3} and D_{4} in order to be able to factor out space and spin:
$(2!)^{-1 / 2}\left(D_{3}+D_{4}\right)=(2!)^{-1 / 2}\left\{\Phi_{1 s}(1) \bullet \Phi_{2 s}(2)-\right.$

$$
\left.\Phi_{2 \mathrm{~s}}(1) \bullet \Phi_{1 s}(2)\right\}(2!)^{-1 / 2}\{\alpha(1) \bullet \beta(2)+\beta(1) \bullet \alpha(2)\}
$$

$(2!)^{-1 / 2}\left(\mathrm{D}_{3}-\mathrm{D}_{4}\right)=(2!)^{-1 / 2}\left\{\Phi_{1 s}(1) \cdot \Phi_{2 s}(2)+\right.$

$$
\left.\Phi_{2 s}(1) \bullet \Phi_{1 s}(2)\right\}(2!)^{-1 / 2}\{\alpha(1) \bullet \beta(2)-\beta(1) \bullet \alpha(2)\}
$$

All four are antisymmetric with respect to interchange of electrons 1 and 2.

For the 1s2s electronic configuration of helium atom,
$D_{1}, D_{2},(2!)^{-1 / 2}\left(D_{3}+D_{4}\right)$ constitute the $S=1$ state, also called ortho helium
and $(2!)^{-1 / 2}\left(D_{3}-D_{4}\right)$ constitutes the $\mathrm{S}=0$ state, also called para helium
These are the eigenfunctions of the operators $\boldsymbol{S}_{z, \text { total }}, \boldsymbol{S}_{\text {total }}{ }^{2}$.

In contrast, the ground state, $1 \mathrm{~s}^{2}$, is $\mathrm{S}=0$ only.
Corollary:
Two electrons assigned the same set ($\mathrm{n}, \ell, \mathrm{m}_{\ell}$, m_{s}) would appear as two identical columns containing the same spin-orbital.
The properties of a determinant guarantee that the value of such a determinant is zero. In other words, such a state can not exist.

Tofu wastrenctitn to ate:

$$
\begin{aligned}
& \psi_{\text {translation }}\left(X_{\text {CM }}, Z_{C M}\right) \cdot \underbrace{O(b)} \\
& \frac{1}{\sqrt{4!}}\left\{\begin{array}{cc}
\psi(1) \cdot \psi(2) \cdot \psi(3) \cdot \psi(4) & -\psi(2) \cdot \psi(1) \cdot \psi(3) \cdot \psi(4) \\
100 & \psi(100 \\
\alpha(1) \cdot \beta(2) \cdot \alpha(3) \cdot \beta(4) & \alpha(2) \cdot \beta(1) \cdot \alpha(3) \cdot \beta(4)
\end{array}\right. \\
& \begin{array}{r}
\left.-\psi_{100}(1) \cdot \psi_{100}(2) \cdot \psi_{200}(4) \cdot \psi_{200}(3)+\text { etc. } 24 \text { Hemin in all }\right\} \\
\alpha(1) \cdot \beta(2) \cdot \alpha(4) \cdot \beta(3)
\end{array}
\end{aligned}
$$

Short-hand for which is $1 S^{2} 2 S^{2}$
"electronic configuration"
Be atom has a 'ground' (lowest energy) configmation $1 s^{2} 2 s^{2}$. All other electronic configmations for be atom such as $15^{2} 2 s 2 p_{0}$ et. have higher energy.
The central field approximation permits us to talk about electric states g atoms in terms of single configurations such as $15^{2} 25^{2} 2 p^{4}$ for cantor, because the $Y_{\text {lm }}(\theta, \phi)$ partare the same as for a hydrogen-like atom, that is, the quantum numbers lard m have the kame significance as for a true one-election system. Hoverer, the quantities ϵ which add togethin to give the electronic energy in $E_{\text {total }}=E_{\text {transl }}+E_{\text {electronic }}$
can no longer be related to $\frac{1}{n^{2}}$.
Thus, we can generate the Periodic Table of the elements by a). how many electrons? (Sarre as atonic number
b) asoign $n l \mathrm{~m}$, for each, for a neutral atom) principle, Wing low Ant ensign orbitals.

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
5. ELECTRONIC STRUCTURE OF ATOMS
5.1 The central field approximation and thePeriodic Table
5.2 Consequences of the Indistinguishability ofElectrons and the Electron Spin
5.3 Coupling of Angular Momenta
5.3.1 Spin-Orbit Coupling5.3.2 How to Represent the Eigenfunctions
for a System in which two Angular
Momenta are Coupled?
5.4 Electronic States of Atoms, Term Symbols,The Ground States of Atoms, Hund's Rules
5.5 Atomic Spectra of Light Atoms, e.g., Na

COUPLING OF ANGULAR MOMENTA
What happens when the physical system has more than one angular momentum? Can the TOTAL ANGULAR MOMENTUM be specified?
Consider two sources of angular momentum J_{1} and J_{2}
(or Total) angular momentum is the

$$
J=J_{1}+J_{2}
$$

What are the possible results of the vector sum? Coneidin an example:
Example:

$$
\begin{array}{ll}
\dot{j}_{1}=2 & m_{j}=2,1,0,-1,-2 \\
\dot{j}_{2}=1 & m_{j_{2}}=1,0,-1
\end{array}
$$

The sum of the z components

$$
J_{z}=J_{1 z}+J_{2 z}
$$

What are the eigenvalues of J_{F} ? These are the eigenvalues of $J_{1 z}^{\delta}+J_{2 z}$, which are $\left(m_{j_{1}}+m_{j 2}\right) \hbar$. Al possible sums are shown:

$$
m_{j}=\left(\begin{array}{c}
3 \\
2 \\
1 \\
0 \\
-1
\end{array} \begin{array}{ccc}
2 & {\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right.} & j=1 \\
\frac{-1}{-2} & -3 & j=2 \\
j=3
\end{array}\right.
$$

Thus the allowed values of j are found to be:

$$
j_{1}+j_{2}, j_{1}+j_{2}-1, j_{1}+j_{2}-2, \cdots\left|j_{1}-j_{2}\right|
$$

The total number of values for m_{j} must be

$$
\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)=4 j_{1} j_{2}+2\left(j_{1}+j_{2}\right)+1
$$

The maximum value of m_{j} must be $\left(j_{1}^{\prime}+j_{2}\right)$. Using J we should be able to generate the other states, stepping down from $\left(j_{1}+j_{2}\right)$ to lead to mivalues. equal to

$$
\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right),\left(j_{1}+j_{2}-2\right), \cdots,-\left(j_{1}+j_{2}\right)
$$

There are only $2\left(j_{1}+j_{2}\right)+1$ numbers here. Therefore, these must be others. To get the othins:

Therefore $j=j_{1}+j_{2}-1$ must be another set of states, and so on .

Since $J=J_{1}+J_{2}$ is an angular momentum then, $\left[J^{2}, J_{x}\right]=0$ in which $J_{x}=J_{1 x}+J_{2 x}$

$$
\begin{array}{ll}
{\left[J^{2}, J_{y}\right]=0} & J_{y}=J_{1 y}+J_{z y} \\
{\left[J^{2}, J_{z}\right]=0} & J_{z}=J_{1 z}+J_{2 z} \\
{\left[J_{x}, J_{y}\right]=i \hbar J_{z}} & \text { and others in } \\
\text { cyclic order }
\end{array}
$$

BUT WHAT CAN WE SAY ABOUT COMMUTATION BETWEEN THE SUM AND ONE OF THE VECTORS?

EXAMPLE: "SPIN-ORBIT COUPLING"

$$
J=L+S
$$

where L is ORBITAL ANGILAR MOMENTIM
S is "SPIN" ANGULAR MOMENTIMM
We can easily see that

$$
\left[J^{2}, L^{2}\right]=0 \quad\left[J^{2}, S^{2}\right]=0
$$

Proof:

$$
\begin{aligned}
& {\left[(L+S)^{2}, L^{2}\right]=\left[\left(L^{2}+S^{2}+2 L \cdot S\right), L^{2}\right]} \\
& \left.=\left[\begin{array}{l}
L^{2}+S^{2}+2 L_{x} S_{x} \\
+2 L_{y} S_{y}+2 L_{x} S_{z}
\end{array}\right), L^{2}\right] \\
& =0 \text { since }\left[L_{x}, L^{2}\right]=0 \text { etc }
\end{aligned}
$$

for all the components of L and L and S commute.

However,

$$
\left[J^{2}, L_{z}\right] \neq 0 \quad\left[J^{2}, S_{z}\right] \neq 0
$$

Proof: As above, this can be rewritten as:

$$
\begin{aligned}
& {\left[\left(L^{2}+S^{2}+2 L_{x} S_{x}\right.\right.} \\
&\left.\left.+2 L_{y} S_{y}+2 L_{z} S_{z}\right), L_{z}\right]=2\left[L_{x}, L_{z}\right] S_{x} \\
&+2\left[L_{y}, L_{7}\right] S_{y} \\
&=2 i \hbar\left(L_{x} S_{y}-L_{y} S_{x}\right) \\
& \neq 0
\end{aligned}
$$

EIGENFIISCTIONS:
How to represent the eigenfunction for a system in which two angular momenta are coupled?

- Besides providing j and m_{j} we need to also give l and s, as in

$$
\left|\ell, s ; j, m_{j}\right\rangle
$$

where $j=\ell+s, \ldots, l-\infty$

$$
m_{j}=j, j-1, \cdots,-j
$$

- The operator equations are (Postulat ez):

$$
\begin{aligned}
& J^{2}\left|l, s ; j, m_{j}\right\rangle=j(j+1) \hbar^{2}\left|\ell, s ; j, m_{j}\right\rangle \\
& L^{2}\left|l, A ; j, m_{j}\right\rangle=l(l+1) \hbar^{2}\left|\ell, s ; j, m_{j}\right\rangle \\
& S^{2}\left|l, s ; j, m_{j}\right\rangle=A(s+1) \hbar^{2}\left|\ell, s ; j, m_{j}\right\rangle \\
& J_{z}\left|l, s ; j, m_{j}\right\rangle=m_{j} \hbar\left|l, \Delta ; j, m_{j}\right\rangle
\end{aligned}
$$

and amice $J^{2}=(L+S)^{2}=L^{2}+S^{2}+2 L \cdot S$

$$
L \cdot S|l, 1 ; j, m j\rangle=\frac{1}{2}[j(j+1)-l(l+1)-s(s+1)\}^{2}|l, \Delta ; j, m, j\rangle
$$

- How do we find the eigenfunctions? By expansion in terms of a complete onthonomal set of functions, such as the eigenfunction of $\left(L_{z}+S_{z}\right)$, which are the product functions

$$
\left|l, m_{l}\right\rangle \cdot\left|A, m_{A}\right\rangle
$$

EIGENFUNCTION \& L ETAENFUNCTION oS?

That is, we can write $\Psi=c_{1} \phi_{1}+c_{2} \phi_{2}+\cdots$

$$
\left|l, s ; j, m_{j}\right\rangle=\sum_{m_{l}} \sum_{m_{s}} C_{m_{l} m_{A}}\left|l, m_{l}\right\rangle \cdot\left|1, m_{A}\right\rangle
$$

where the coefficients can be found by the naval method: $\int \phi_{1}^{*} \Psi d \tau=c_{1}$

$$
\left\langle l, m_{l}\right| \cdot\left\langle s, m_{2} \mid l, s ; j, m_{j}\right\rangle=C_{m_{l} m_{l}}
$$

THESE "vector"
coughing coefficients" or "Clebsch-Gordan coefficients" are found in tables in many books, are merely the expansion coefficients

For an electron [in a "uydrogen-like" atom] having both orbital angulan momentum ard spin angular momentum, the eigenfunction of $H, S^{2}, L^{2}, J^{2}, J_{B}$ operators are the functions:

$$
R_{n \ell}(r) \cdot\left|\ell, s ; j, m_{j}\right\rangle
$$

The eigenstates $l=1 \quad \alpha=\frac{1}{2} \quad j=l+\alpha=3 / 2 \quad m_{j}, \frac{1}{2},-\frac{1}{2}, \frac{-3}{2}$
are called $2 p$ and $j=l-\mu=1 / 2 \quad \frac{1}{2},-\frac{1}{2}$
are called ${ }^{2} P_{3 / 2}$ and ${ }^{2} P_{1 / 2}$ (a "doublet"
 is called a TERM SYMBOL actually six 5 the
altogether.

SPIN-ORBIT COUPLING

The $\left|\ell \mathrm{s} ; \mathrm{j} \mathrm{m}_{\mathrm{j}}\right\rangle$ states
Two-component function for the ${ }^{2} \mathrm{P}_{3 / 2}$ state:

$$
\left(\left[\ell+1 / 2+\mathrm{m}_{\mathrm{j}}\right]^{1 / 2} Y_{\ell \mathrm{m}_{\mathrm{i}}-1 / 2}(\theta, \phi) \bullet \alpha\right)
$$

$1 \quad \mathrm{R}_{\mathrm{n} \mathrm{\ell}}(\mathrm{r})$
$[2 \ell+1]^{1 / 2} \quad\left(-\left[\ell+1 / 2-m_{j}\right]^{1 / 2} Y_{\ell m_{j}+1 / 2}(\theta, \phi) \bullet \beta\right)$
and the ${ }^{2} \mathrm{P}_{1 / 2}$ state:

$$
\left(\left[\ell+1 / 2-\mathrm{m}_{\mathrm{j}}\right]^{1 / 2} \mathrm{Y}_{\ell \mathrm{m}_{\mathrm{j}-1 / 2}(\theta, \phi)}(\alpha)\right.
$$

$1 \quad \mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})$
$[2 \ell+1]^{1 / 2} \quad\left(\left[\ell+1 / 2+m_{j}\right]^{1 / 2} Y_{\ell m_{j}+1 / 2}(\theta, \phi) \bullet \beta\right)$
Note that due to spin-orbit coupling, the good quantum numbers are $\ell \mathrm{s}$ j m_{j} not m_{ℓ} not m_{s}

Neglecting spin-orbit coupling:

$$
\left\{\begin{array}{l}
\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \mathrm{Y}_{\ell \mathrm{m}}(\theta, \phi) \bullet \alpha \\
\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \mathrm{Y}_{\ell \mathrm{m}}(\theta, \phi) \bullet \beta
\end{array}\right)
$$

1. INTRODUCTION TO QUANTUM MECHANICS2. ANGULAR MOMENTUM3. THE HYDROGEN ATOM
2. MATRIX REPRESENTATION OF QUANTUMMECHANICS
3. ELECTRONIC STRUCTURE OF ATOMS
5.1 The central field approximation and thePeriodic Table
5.2 Consequences of the Indistinguishability ofElectrons and the Electron Spin
5.3 Coupling of Angular Momenta
5.3.1 Spin-Orbit Coupling
5.3.2 How to Represent the Eigenfunctionsfor a System in which two AngularMomenta are Coupled?
5.4 Electronic States of Atoms, Term Symbols,The Ground States of Atoms, Hund's Rules5.5 Atomic Spectra of Light Atoms, e.g., Na
4. INTRODUCTION TO QUANTUM MECHANICS
5. ANGULAR MOMENTUM
6. THE HYDROGEN ATOM
7. MATRIX REPRESENTATION OF QUANTUM MECHANICS
8. ELECTRONIC STRUCTURE OF ATOMS
5.1 The central field approximation and thePeriodic Table
5.2 Consequences of the Indistinguishability of
Electrons and the Electron Spin
5.3 Coupling of Angular Momenta
5.3.1 Spin-Orbit Coupling
5.3.2 How to Represent the Eigenfunctionsfor a System in which two AngularMomenta are Coupled?
5.4 Electronic States of Atoms, Term Symbols,
The Ground States of Atoms, Hund's Rules
5.5 Atomic Spectra of Light Atoms, e.g., Na

Energy levels in a homogenerus suagnetre fuld, the magnette mornent ascociater unth argulan mom.
Clascical:

$$
\begin{aligned}
& \vec{B}=\vec{\nabla} \times \vec{A} \\
& \vec{\varepsilon}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \phi
\end{aligned}
$$

$\vec{A}(\vec{r}, t)$ magneti vector potenthal $\phi(\vec{r}, t)$ scalaurestuentiainctic

$$
\begin{aligned}
& H=\left(\frac{\vec{p}-\frac{q}{c} \vec{A}}{2 m}\right)^{2}+(V+q \phi) \\
& \text { priential pcalas } \\
& \text { of non-EM } \\
& \text { Q.M } M=\left(\frac{\hbar}{i} \frac{\vec{\nabla}-\frac{q}{c} \vec{A}}{2 m}\right)^{2}+(V+q \phi) \\
& =\frac{-\hbar^{2}}{2 m} \nabla^{2}+(V+q \phi) \\
& \frac{-g \hbar}{2 m c i}(\vec{\nabla} \cdot \vec{A}+\vec{A} \cdot \vec{\nabla}) \\
& +q^{2} A^{2} / 2 m c^{2}
\end{aligned}
$$

For a vartiele y chaye of in a
homog. magn. fued \vec{B} (alouzzdi.)

$$
\begin{aligned}
& \phi=0 \\
& \vec{A}=\frac{1}{2} \vec{B} \times \vec{r} \\
&=-\frac{B_{z} y}{2} \hat{\imath}+\frac{B_{z} x}{2} \hat{\jmath} \\
& \vec{B}=\vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{2} & \frac{\partial}{\partial z} \\
-\frac{B_{z} y}{2} & +\frac{B_{z} x}{2} & 0
\end{array}\right|=B_{z} \hat{k} \\
& \frac{o k}{}
\end{aligned}
$$

With this expreseron for \vec{A} :

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{A}=-\frac{B_{z}}{2}\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right) \\
& \vec{A} \cdot \vec{\nabla}=-\frac{B_{z}}{2}\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right)=\frac{B_{z}}{2} \frac{i L_{z}}{\hbar} \\
& A^{2}=\left(-\frac{B_{z}}{2} y\right)^{2}+\left(\frac{B_{z} x}{2}\right)^{2}=\frac{B_{z}}{4}\left(x^{2}+y^{2}\right) \\
& \frac{-q \hbar}{2 m c i}(\vec{\nabla} \cdot \vec{A}+\vec{A} \cdot \vec{\nabla})=\frac{-q}{2 m c} B_{z} L_{z}
\end{aligned}
$$

$$
H=\frac{-\hbar^{2}}{2 m} \nabla^{2}+v{\underset{f}{2 m c}} B_{z} L_{z}+\frac{q^{2} B_{z}^{2}}{8 m c^{2}}\left(x^{2}+y^{2}\right)
$$

Firs urdu Leman effect B_{z} is not too large so that
for Hatom:

$$
H=\frac{-\hbar^{2}}{2 \mu r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{l^{2}}{2 \mu r^{2}}+V(r)+\frac{e}{2 \mu c} B_{z} l_{z}
$$

because $\left[l^{2}, l_{z}\right]=0$
then $\left[\mathscr{H}, L^{2}\right]=0, \quad\left[H, l_{z}\right]=0$ for this: hamiltonian.
$\therefore x_{1} l^{2}, l_{z}$ are still aimult. honourable constants $?_{2}$ The motion if we can neglect $B_{z}{ }^{2}$ term

$$
\therefore \Psi_{n l m}(r)=R_{n e}(r) Y_{\text {lm }} \text { still are goad }
$$

satisfyng

$$
\begin{aligned}
& \mathcal{L} \psi_{n l m}=E \psi_{n l m} \\
& \left\{\begin{array}{l}
\left.\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{-}}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\left(l(1+1) \hbar^{2}\right.}{2 \mu r^{2}}+V(r)\right\} R_{n e}(r) Y_{l m}(\theta, \phi) \\
\quad+\frac{e B_{z} m \hbar}{2 \mu C} R_{n l}(r) Y_{l m}^{(m, \phi)}=E \psi_{n l m}=E_{0}+\frac{e B_{z} B_{z}}{2 \mu c}(m \hbar)
\end{array}\right.
\end{aligned}
$$

same radial eqn has to he solved $\frac{e \hbar}{2 \mu C}=\mu_{B}$
Bohr magneto
Thus it is as if theneis a magnetic moment with z component g magnitude $-m \mu_{B}$

$3 d$ \qquad

市 \qquad

Hownever anomalouz Zeeman ypect

Normal and anomalous Zeeman effect. Viewed perpendicular to the magnetic field.

[^0]: : E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963); computed for ground state configuration, except for $\operatorname{Cr}\left([\operatorname{Ar}] 4 s^{2} 3 d^{4}\right)$ and $\operatorname{Cu}\left([\operatorname{Ar}] 4 s^{2} 3 d^{9}\right)$.

