
Review Sheet 
Concepts and definitions you should know and understand: 
 
well-behaved function 
normalization 
eigenfunction 
eigenvalue 
operator 
observable 
linear momentum 
kinetic energy 
potential energy 
Hamiltonian 
Laplacian 
Schrödinger equation 
expectation value 
the postulate on operators 
the postulate on eigenvalues 
the postulate on expectation values 
separation of variables 
polar coordinates 
degenerate eigenfunctions 
particle on a circle  
given a Hamiltonian, how to find the eigenfunctions 
particle on a line 
probability density 
energy level diagram 
complete set of eigenfunctions of an operator 
orthogonal 
orthonormal 
superposition of states 
linear operators 
Hermitian operators 
commutator 
commuting operators have simultaneous eigenfunctions 
standard deviation of a series of measurements 
uncertainty principle 
natural linewidth 
standard deviation of energy and linewidth 



time-dependent Schrödinger equation 
stationary state 
constant of the motion 
when is the average value of an observable invariant with time? 
derivation of Newton’s equations from quantum mechanics 
angular momentum 
cross product of two vectors 
derive commutation rules for angular momentum 
spherical polar coordinates 
particle on a sphere 
numerical solution of the theta equation 
spherical harmonics 
rigid rotor 
center of mass coordinates  
reduced mass 
the hydrogen atom 
a particle in a Coulomb field 
the quantum numbers for a hydrogen atom 
radial distribution function 
Bohr radius 
the characteristics of the eigenfunctions of the H atom 
central field approximation for many-electron atoms 
raising and lowering operators 
derive commutation rules of raising and lowering operators 
the result of applying the ladder operators on the eigenfunctions of angular  
           momentum 
bra ket notation for angular momentum functions 
vector sum of two angular momenta 
commutation rules for coupled angular momenta 
intrinsic (spin) angular momentum of a particle 
spin orbit coupling  
term symbol 
 



Common mistakes in this class:  (Get it right for the final exam) 
 
DIMENSIONAL ANALYSIS: 
Check the expressions you are using by making sure the dimensions are correct. If 
it is supposed to be equal to a length, then the units for the whole expression must 
be in units of length. 
 
VECTORS: 
 1. The vector A is not equal to Ax + Ay + Az. The correct relation is  
A = Axi + Ayj + Azk, where i, j, k are unit vectors along the x,y,z Cartesian axes. 
 2. The square of vector A is a scalar quantity equal to  
A•A = Ax

2 + Ay
2 + Az

2. 
 
CALCULUS: 
 1. After integration over all variables, the result is a number, the result can 
not still have the variable left. Remember that an integral corresponds to a sum 
over infinitesimal slivers (volume elements) weighted by the value of the integrand 
function in that sliver of integration space. 
 2. The meaning of a double integral: The various parts of the function within 
the integrand can not be separately integrated if there are variables in common. 
That is, 
∫θ=0

π∫φ=0
2πF(θ,φ)*cosφ G(θ,φ) sinθ dθdφ  

≠ ∫θ=0
π∫φ=0

2πF(θ,φ)*G(θ,φ)dθdφ•∫θ=0
π sinθ dθ•∫φ=0

2π cosφ dφ.  
One must do all the θ parts in one integral and all the φ parts in another integral. 
 
POSTULATE 3: 
 If the operator Op is known for any observable, and the function which 
describes the state of the system is known to be Ψ(1,2,3,..),  
then the average value that will be observed is given by 
      ∫∫∫...∫ Ψ(1,2,3,..)* Op Ψ(1,2,3,..) dτ1dτ2dτ3...  
Op does not have to be related to energy and Ψ does not have to be an 
eigenfunction of anything, it just has to be normalized. 
  
HYDROGEN ATOM: 
 1. x = r sinθ cosφ corresponds to the position of the electron relative to the 
nucleus sitting at the origin of a Cartesian axis system. 
 2. dxdydz = r2dr sinθdθ dφ is the correct volume element for integration for 
a hydrogen atom system. The limits are r = 0→∞, θ = 0→ π, φ = 0→ 2π. 



 3. Know the significance of every coordinate involved in the wavefunction 
of the hydrogen atom and where it came from. Know the meaning of every symbol 
used. We did all of this in great detail!  
 4. The energy of a hydrogen atom is E = − (Z/n)2(e2/2a). Negative! The 
energy is proportional to Z2. The zero of energy is for the electron at infinite 
distance from the nucleus. 
 5. In this expression e is the magnitude of charge of the electron, and a = 
h2/μe2 , in which (1/μ) = (1/melectron) + (1/mnucleus). On the other hand, the Bohr 
radius a0 =  h2/me2  

Here m, the mass of the electron, is used alone because a0 corresponds to (1/μ) = 
(1/melectron) + (1/mnucleus) where mnucleus is taken to be infinite, leaving (1/μ) = 
(1/melectron).  
 In general a = h2/μe2 [where the reduced mass μ is given by (1/μ) = 
(1/melectron) + (1/mnucleus)] appears in the energy eigenvalues and in the 
eigenfunctions Rnl(r) of the hydrogen atom. I have explained this in lecture and 
told you that isotope shifts in atomic spectra clearly are due to slightly different 
reduced masses for different masses of nuclei. Your textbook makes this 
distinction between the Rydberg constant for the infinitely heavy nucleus and for 
the real nucleus. 
 
MANY-ELECTRON ATOMS: 
  1. Understand separation of variables! This is what permits the writing of a 
sum of [Zeff(i) /ni]2 ⋅(e2/2a0) , one for each electron, in order to get the energy for 
the whole atom. 
 2. Zeff(i) = Z -snl, for the ith electron in the nili subshell.  
snl comes from the screening effect of all the other electrons. Have to figure out the 
value of snl for each electron by counting. For example, using Slater’s rules 
Z = 5, configuration 1s22s3p3d: 
electron nili 1s 1s 2s 3p 3d for the ith 

electron 

snl  

for the ith 
electron 

(Z - snl)i

i=1 1s − 0.3 0 0 0 0.3 4.7 
i=2 1s 0.3 − 0 0 0 0.3 4.7 
i=3 2s 0.85 0.85 − 0 0 1.7 3.3 
i=4 3p 1.00 1.00 0.85 − 0 2.85 2.15 
i=5 3d 1.00 1.00 1.00 1.00 − 4 1.0 

 
 



EIGENFUNCTIONS OF AN OPERATOR: 
Understand the principles,  
      “The eigenfunctions of an operator that can represent an observable 
(a Hermitian operator) form a complete orthonormal set.”  
Do not simply copy results without thinking, in evaluating integrals such as the 
following:  
 
 (1) ∫ ∫Ψi (θ,φ)*Ψi (θ,φ) dτ = 1 always, for normalization of a function that 
describes a physical system. Normalization is very general, Ψi (θ,φ) does not have 
to be an eigenfunction of anything. 
 
 (2) ∫ ∫Ψi (θ,φ)*Ψk (θ,φ) dτ = 0  if Ψi and Ψk are eigenfunctions of a 
Hermitian operator corresponding to different eigenvalues, in which case they are 
orthogonal. Otherwise, if Ψi and Ψk  are any two different functions, the integral 
could be any number; it is simply the overlap between the two functions. 
 
 (3) ∫ ∫Ψi (θ,φ)*Op Ψk (θ,φ) dτ = 0 only if Ψi and Ψk  are eigenfunctions of 
Op itself, in which case,  
∫ ∫Ψi (θ,φ)*Op Ψk (θ,φ)dτ = ∫ ∫Ψi (θ,φ)*akΨk (θ,φ)dτ  = ak∫ ∫Ψi 
(θ,φ)*Ψk(θ,φ)dτ = 0 because Ψi and Ψk are eigenfunctions corresponding to 
different eigenvalues, they are orthogonal. Otherwise , when Ψi and Ψk are any 
two different functions, the integral could be any number; it is simply the overlap 
between the function Ψi and the new function resulting from OpΨk. 
 
 (4) ∫ ∫Ψi (θ,φ)*Op Ψi (θ,φ) dτ = ai only if Ψi is an eigenfunction of 
Hermitian operator Op with the eigenvalue ai . Otherwise, if  Ψi is not an 
eigenfunction of Op, but is an eigenfunction of some other operator Op′ then one 
needs to carry out the operation OpΨi  to find out what is the result, that is, to find 
out if any part of the result has a non-zero overlap with the old function Ψi . For 
example, if Ψi is an eigenfunction of  the Hamiltonian,  
∫ ∫Ψi (θ,φ)*Op Ψi (θ,φ) dτ ≠ Ei . To get the result, one must do the operation  
Op Ψi (θ,φ) which will of course result in some function which can be written as a 
linear combination of the complete orthonormal set of Hamiltonian eigenfunctions. 
Thus   
Op Ψi (θ,φ) = c1Ψ1 (θ,φ) + c2Ψ2 (θ,φ) + c3Ψ3 (θ,φ) + c4Ψ4 (θ,φ) + ....  



Now, since the eigenfunctions of the Hamiltonian form an orthonormal set, then 
 ∫ ∫Ψi (θ,φ)*Op Ψi (θ,φ) dτ = ci  since only the ith function is not orthogonal and 
it has the coefficient ci   in front of it.  
On the other hand if it is stated that Ψi (θ,φ) is a function that describes the state 
of the system, and Op is a Hermitian operator, then the integral  
 ∫ ∫Ψi (θ,φ)*Op Ψi (θ,φ) dτ is merely the average value of the observable for 
which Op is the operator. This is a statement of Postulate 3. 
 
 


