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Diatomic molecule
nuclear motion problem:

{(-(H12MA)V2 A -(H*12Mg) Vg

+ Uy etc (R)}anuclear motion = EY nuctear motion |

Treat this just like the H atom problem.

(1) Change from two-particle problem to an
effective one-particle problem by using instead
of (XA, YA, ZA, XB, YB, ZB) the set of
coordinates

(@) (Xcem, Yem, Zem) with respect to the |
laboratory-fixed frame, with associated mass
Miotai = Ma + Mg and

(b) (R,6,9) where R is Rag, and 6 and ¢ are
wiih respect to the laboratory frame, except
that the origin is translated to the center of
mass of the diatomic molecule, with
associated reduced mass p, such that
1/u=1/Mp + 1/Mp

and then using separation of variables to
separate the problem in CM coordinates from

the problem in internal motion coordinates.




Separation of variables leads to

anuclear motion —

lIItransl(xCMaYCM,ZCM)°LPinternal(Rs9,(I))
E = E transt * Einternal
and two equations to solve,

{-(7 1l 2Mtotal)v cMWianst = EtranstPiranst (18)

{ ( zlzu)v R8¢+ U?uetc (R)}lPlntemal
— Emternal lI"lnternall (1 b)

(2) Separation of variables in solving eq.(1b) is
again just like that in H atom, since ¢ can be
separated out first, and then 6 can be

~ separated out next, Ieadlng to

Winternal = Wib-rot = F(R)’YJM(6 ¢)
Since eq. (1b) is identical to that of the H atom
except that
instead of ~Zer we have U, . (R),
Ym(0,0) are the identical spherical harmonics
functions and the rotational angular
momentum quantum numbers J, M are the

analogs of / and m,.



(3) The R part that remains to be solved is
-(h*12u){ d°F/dR? + (2/R)dF/dR}
+ J(IH1)AFI20R? + Uy eto(R)F = Ectecnvibrotf
Just as in the H atom, we change variables:
G(R) = ReF(R)
leading to
(h2/2 )d°G/dR? + J(J+ 1) G/2uR?* + Uy, eo(R)G
- Eelec vib- rotG (3)
Since the potential energy functions U;,e(R)
have different shapes characteristic of the
electronic state, we use a Taylor series
expansion around R=R¢q to represent the U(R)
functions:
- Letx=R- Req,
Umetc(fw'l) aetc( eq) + (dU/dX)()X
+ (1/21)(d°Uldx®)ox® + (1/3')(d3U/dx )ox
+ (1/41)(d*Uldx )ox* + .
where we note that (dU/dx), = 0 since Req
- corresponds to the minimum of the Uy,e(R)
function. ~ -




and replace G(R) by S(x), so that the equation
to be solved is now

-(B°12p)d*S/dx® + JgJ+1)h S/[2u(Re+X) |

+ {(1/2! )(d2U/dx )Ox + (1/3")(d 3U/dx

+ (1/4)(d*Uidx)ex* + ...)S S

= {E elec-vib-rot Ukaetc(Re)}S | (4)

)oX

We can further replace the second term with
its series expansnon in powers of X:
[Re“/(Re+X)?] = 1- 2X/Re + 3 X*/R: + ...

SO thaéé te e;uahon to be solved becomes

X/Re + 3 X°/Rs+. ]J(J+1 J7°121Re
(1/2').=>z'd52-f?a/dx )ox + (1/31)(d°U/dx’ )ox
+ (1/41)(d*Uldx)ex* + ...1S | --
= {E elecwib-rot “Unetc(Re) = J(J+1 )h2/2uR s
The problem
-(HP2u)d* (x)/dx? +(1/21)(d2U/dx)oxP¥(x) =
Eno¥(x) is a known QM problem which is
exactly solvable. Therefore we can use
perturbation theory to solve eq. (4)
where # = #7O + hin which

I\)




70 = -(BP12p)d%dx? +(1/21)(d2U/dx?)ox>
and HO(x) are the zeroth order wavefunctions,
and
h=[-2x/R, + 3x2/R +.. JJ(J+1 h2/2p,R °
+ (1/3')(d3U/dx Jox° + (1/4')(d U/dx*)ox* + ...
Write this so as to represent the constants in
simpler form |
h = ex+ bx*+ cx>+dx* + ...
where, e = - 2J(J+1)7°/2uRs’
b=+ 3J(J+1H2uR,"
= (1/31)(d°U/dx’),
= (1/41)(d*U/dx™)q
We can set up the matrix representation of /4 in
the complete orthonormal set of HO(x)
functions.
First we need the matrix representation of x,
then by matrix multiplication and definition of
matrix representation we will find the matrix
representation of A = ex+ bx*+ cx°+dx* + ...



The matrix representation of x in the basis of
the complete orthonormal set of harmonic
oscillator eigenfunctions {¢g, ¢1, @2, ¢3, ...}
is given by:  (where a =n/4nve}:), and the
corresponding energy eigenvalues are
(v+¥%)hve, wherev=0,1,2,3,...

0¥\ 000
V110 [V2] 0| O
v, | .
x= a” 0 V2, 0 V3| O
0O 0 |~N3| 0|4
1 0 V2 0 { 0 [ o 0 o 1.
0 3 0 V6 0 0 0 0
V2 0 5 0 V12 0 0 0
2= a v6 0 7 0 V20 0 0
0 V12 0 9 0 V30 0
3 0 6V2 0 | <24 0 0 0
0 15 0 10v6 0 V120 0 0
xt = g% B2 0 39 0 14v12 | O V360 0
0 10V6 0 75 0 18v20 0 840
V24 0 14312 0 123 0 V1680 0
.




EY = (V+Y2)five
E=b (x%)hy +d () [since (x**)y,=0]
E? == D (KLANVYV] ALK

E.O_g ©

= - Zk e’ (Xkv) 2 1 ¢? (3(3;_(_!) ° + 2ec (Xkv) (X.3j<_1)
Ek(O)_ EV(O)

in which we show only terms in ex + cx’
fwhich are zero by symmetry in E, ) but which
can contribute values of same order of
magnitude as those in E,\"]

E elec-vib-rot = U?uetc(R ) + J(J+1 )hZ/ZpR 2

+ E, ©) 4 EV(1) + EV(2)
Xkv = (24)/2{V/26kv1 + k1/25kv+1 }
(x v =(2a) {(2v+1)6kv +V5(v- 1) 8 ¢ v-2
- + (V)" (v42)" Sz }
(o Nev = (2a) 2 BV et + 3(vH1)728 g s
+H(v+1 )/2(v+2)/2(v+3)/26 y V+3+v/2(v 1)(v-2)"8  v-3}
(x hv = (2a)°{3v° +3(v+1) }



We see that E," has a dependence on
both J(J+1) and (v+'2)hve in the b term, and on
[(v+¥2)Ave I* in the d term. On the other hand
E."”) has a dependence on [J(J+1)]* in the &°
term and [(v+%)Ave I in the ¢® term, and has a

dependence on both J(J+1) and (v+¥2)fve in

- the ec term. From these alone, one can
recognize the perturbation terms that
contribute to the spectroscopic constants that

appear with J(J+1)e(v+¥2)hve , [J(J+1)]7,
[(v+¥2)hive ]?, and other terms we chose not to-
evaluate in E,” such as [(v+"5)Ave I(d?),
[J(J+1)Pe(v+Y2) five(b?), J(J+1)e[(v+V2)Ave]A(bd).

Thus, we can find the spectroscopic
constants o (b+ec), De (€%), ivexe (d+C%),
fiveye (0°) , Be (B%), Ve (bd), etc., in terms of the
molecular constants (d°U/dx"),, (d*U/dx*),

[ in addition to R and (d°U/dx?), that the
zeroth order rigid rotor+HO energies provide].



E?L,V,J - U?uetc(Re)
+ J(JH1)] Bet ae(VHY3) + ye(VH15) +.]
+ [+ Det Be(v+Y2) +..]
+ ive(V+Y2) +hivexe(VHY2)” +hveye(VH12) +
+ Yoo (5)

where, in energy units,

Bo = 1°/2uR,’ 1

five = 1 [U"(Ro)/p]

D, = 4563/( five)’

O = -2Bs°/five #{3 + 2Be[Re°U""(Rs)] Nfve)}

fivexe = VaBel(five)?e{(1%3)Be[ReU"" (R )P/ (fve)”

- [R*UY(Re)] }

Yoo =("116)Be’/(five) o{-("*15)Be[Re°U"" (Re )|/ (five)?
+[Re'U"(Re)] }

Note that Yyois the same anharmonic

correction to every vibrational level. Yy is a

constant for the electronic state, so is usually'
put together with the electronic energy |

Us..etc(Re). Note that purely electronic U;,etc(Re)
Is mass-independent, while Yy, is not.




Signs:

We have written all the energy terms with +
signs. In some books explicit negative signs
are used in the energy expression so that all
spectroscepic constants have positive values.
The spectroscopic constants in eq. (5) that

have negative values are fivexe , de, and D .

U"(Re) > 0 always. With rare exceptions,
U""(Re) <0 and UY(Re) >0

Mass dependence: |
Spectroscopic constants differ for lsotopomers

Exammlng the p dependence of the constants,




General shape of U(x)

(a) Morse function

U(x) = De{1 — e-ax}2 in the dissociation energy

D., Morse parameter a

~ (b) As graduate students, Dudley Herschbach
and Victor Laurie, discovered that force
constants correlate with position of the atoms
in the Periodic Table, i.e., in the potential
function U(x) , x = R-Re:

U(X) = U(R ) + 5 {FQX + F3X + F4X }

for the ground electronic state of diatomic
molecules, the empirical relation holds,

= (Re'an)/bn

(-1)" Fr=10

in which a» and b,, az; and bs, a, and by, are
the same for atoms in the same rows of the
Periodic Table. |

[ J. Chem. Phys. 35,458(1961)]



Herschbach-Laurie parameters.

Row a, as b, b, Row a, a, b, b,
H 1 1.54 1.58 0.64 0.48 2 4 2.63 2.70 0.96 0.73
H 2 1380 1.85 0.69 0.59 2 5 2.71 2.81 1.09 1.09
H 3 198 2.01 0.95 0.74 3 3 2.70 2797 0 1.12 0.89
H 4 208 2.07 0.96 0.74 3 4 2.66 2.76 1.48 1.19
H 5 206 2.12 0.78 0.90 3 5 2.73 2.83 1.31 1.05
1 1 1.73 1.78 047  0.39 4 4 2.85 2.95 0.94 0.70
1 2 202 2.10 0.53 0.48 4 5 2.84 2.93 1.09 0.78
1 3 215 2.26 0.60 0.55. H 3T 1.82 1.92 1.04 0.86
1 4 236 2.41 0.76 0.57 H 4T 1.83 0.75
1 5 247 2.48 0.87 0.68 H 5T 1.77 0.47

-2 2 240 2.48 0.70 0.61 1 3T 1.98 0.44

2 3 1

2.54 2.57 0.98 0.72

4T 2.15 0.52
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