STATISTICAL THERMODYNAMICS WITH NUMERICAL APPLICATIONS

Chemistry 448 Spring Semester 2000 Prof. Cynthia J. Jameson

COURSE OUTLINE

1. INTRODUCTION

2. SOME DEFINITIONS AND ASSORTED MATHEMATICAL METHODS permutations, configurations, system quantum states boltzons bosons fermions ensemble average the most probable distribution Lagrange multipliers

Stirling's approximation

3. STATISTICAL MECHANICS OF A SYSTEM OF ONE KIND OF PARTICLES, NON-INTERACTING

the molecular partition function the nature of alpha and beta interpretation of heat and work interpretation of entropy

4. ATOMS AND DIATOMIC MOLECULES

energy levels & partition functions distribution laws & thermodynamic functions nuclear spin statistics

5. STATISTICAL MECHANICS AND CHEMICAL EQUILIBRIUM

6. POLYATOMIC MOLECULES

symmetry number vibrations classical partition functions without internal rotation

7. CANONICAL AND GRAND CANONICAL ENSEMBLES

thermodynamic functions systems with more than one component

8. FLUCTUATIONS

density fluctuations in the grand ensemble the random walk diffusion and random walk

9. IMPORTANCE SAMPLING

Metropolis

Rouse algorithm

Norman-Filinov algorithm for grand canonical ensemble
Finite size problem, periodic boundary conditions

10. SYSTEMS OF INTERACTING PARTICLES

canonical partition function
distribution functions
pair correlation functions
the assumption of pair potentials
the Lennard-Jones fluid
ensemble averages of dynamical variables and molecular properties
more on intermolecular potentials
phase transformations

11. MIXTURES

the reference state distributions of the molecules of a binary mixture average properties in a binary mixture

12. SAMPLING METHODS

why not use Boltzmann sampling? umbrella sampling

13. MOLECULAR DYNAMICS SIMULATIONS

what types of information do we expect to retrieve from MC & MD simulations?

14. CRYSTALS

Einstein's model
Debye model
entropy and disorder in crystals

15. STATISTICAL MECHANICS OF MAGNETIC SYSTEMS

non-interacting magnets N interacting magnets Ising model