Problem Set 3

Chemistry 448 Cynthia J. Jameson

- 1. The nuclear masses of ⁶Li and ⁷Li are 6.017034 amu and 7.018232 amu, respectively, and their corresponding terrestial abundances are 7.52% and 92.48%. The ²P electronic state has an excitation energy of 14,904 cm⁻¹ above the ground state, and the ²D state is excited by 27,206 cm⁻¹ above the ground state. Calculate the partition function and the entropy of Li at 1000 K and 1500 K.
- 2. The molecule Li₂ has an equilibrium internuclear distance of 2.672x10⁻⁸ cm and a fundamental vibration frequency of 351.43 cm⁻¹. The excited electronic states known are, respectively,

, , , , , , , , , , , , , , , , , , , ,	
excited electronic state	excitation energy
$^{1}\Sigma_{u}^{+}$	14,068 cm ⁻¹
$^{1}\Pi_{u}$	20,439 cm ⁻¹
$^{1}\Sigma_{u}^{+}$	30,558 cm ⁻¹

The ground state is $^{1}\Sigma_{g}^{+}$. Calculate the partition function and the entropy of Li₂ at 1000 K and 1500 K.

- 3. The vapor pressure of lithium at 1000 K is 0.782 mm Hg. The dissociation energy D_0 of Li_2 has been independently determined to be 1.08 ± 0.05 eV. Calculate the ΔS for the dissociation. Using the partition functions you have calculated, determine the fraction of molecules in the vapor which are Li_2 molecules. Show that the thermodynamic ($\Delta G^0 = -RT$ InK) approach yields the same result.
- 4. What is the equilibrium constant for the homogeneous gas phase reaction:

6
Li + 7 Li \leftrightarrow 6 Li 7 Li + 7 Li

at 1000 K?

- 5. In Doklady Akademii Nauk USSR 128, 977 (1959), evidence is presented for the existence of a molecule Be $_2$ in high intensity in the vapor at equilibrium with crystalline Be. According to the authors of this article, the ratio of Be $_2$: Be is ca. 10:1 at 1528 K. The vapor pressure of Be is 1.3×10^{-2} mm Hg at 1528 K. Some information about the Be atom: The nuclear mass of Be is 9.015060 amu (it is mono-isotopic). Excited electronic states are 3 P (21, 957 cm $^{-1}$) and 1 P (42,565 cm $^{-1}$) and the ground state is 1 S $_0$. The molecular parameters of Be $_2$ are not known, but by analogy with similar molecules we may estimate $\omega_e \sim 800$ cm $^{-1}$ and $r_e = 1.95 \times 10^{-8}$ cm. If we further assume no low-lying electronic energy states for Be $_2$, what value of D $_0$ for Be $_2$ is implied by the experimental results of the Russian workers? Is this a reasonable value, based on your knowledge of molecular bonding?
- 6. Suppose that a molecule could exist in either of two energy levels, ε_1 and ε_2 , with degeneracies g_1 and g_2 . Derive expressions for E, S, A, and C_V for N molecules of the

substance. Taking cognizance of the numbers of molecules, N_1 and N_2 in each of the two states, show that the heat capacity will be

$$C_V = \{N_1N_2/NkT^2\} [\varepsilon_2 - \varepsilon_1]^2.$$

- 7. Assuming that 75% of the atoms of chlorine have mass number 35 and 25% have mass number 37, what fraction of the molecules of chlorine will have masses 70, 72, and 74, if pairs of atoms are taken at random?
- 8. Consider the equilibrium

$$I_{2(g)} \leftrightarrow 2I_{(g)}$$

- (a) Set up an expression for the equilibrium constant for this reaction, using the following data: the bond energy, ΔE_0 , is equal to 35.603 kcal; the moment of inertia of the I_2 molecule is equal to 750.2x10⁻⁴⁰ g cm²; the vibrational frequency of the diatomic molecule is 213.67 cm⁻¹; the molecule has an electronic degeneracy equal to unity, but the atom, in a $^2P_{3/2}$ state, has a degeneracy equal to 4.
- (b) Calculate numerical values for K_p , and compare them with the following experimental results:

temperature	K _p observed
800 C	1.14x10 ⁻² atm
1000 C	1.65x10 ⁻¹ atm
1200 C	1.23 atm

9. Estimate the standard Gibbs energy change in calories for the following reaction at 25 C:

$$Cl_{2(g)} + Br_{2(g)} \leftrightarrow 2BrCl_{(g)}$$

The value of ΔE_0 for this reaction can be taken as the heat of reaction, -0.387 kcal (using what approximation?). As for the effect of rotation, use for the covalent radii of Br and CI the values 1.14 Å and 0.99 Å, respectively, from which the moments of inertia can be calculated. {Be sure to use the appropriate reduced masses, such as $m_{Br}m_{Cl}/[m_{Br}+m_{Cl}]$ for the molecule BrCl.} Finally you may neglect any vibrational excitation (or assume that such effects cancel). Compare your answer with the accepted value of -1.211 kcal.