7. Canonical and grand canonical ensembles

thermodynamic functions systems with more than one component

CANONICAL and GRAND CANONICAL.
ENSEMBLES
A. ISOLATED SYSTEMS:

Constraints: N and E are conserved for the one system.

Mole culaw partition function

$$
q=\sum_{i} g_{i} e^{-\epsilon_{i} / k T}
$$

Can calculate themodynamue grantitis ard averages for any ideal gas (i.e., non-interacting particles)

Microcanonical ensemble of replicas each one with N and E and each one in a given SYSTEM, QIIANTUM STATE. At any instant of time there is a DISTRIBUTION, i.e., there are cone number of replicas that are in the fth SYSTEM QUANTUM STATE with energy E
B. CANONICAL ENSEMBLE

Make replicas of the system of interest. Consider an ensemble of replicas, each one in an identical container (and fields) and with the came number of partides. Place replicas in contactthey exchange energy but NOT particles. Entire ensemble of replicas has a fixed. energy, that is, the ensemble is isolated. At amy instant of time there are some number of replicas that are in the j th SYSTEM QUANTUM STATE with energy E; (V)
C. GRAND CANONICAL ENSEMBLE

Ensemble of replicas, which can exchange energy with each other and exchange particles with each other. Each replica has the parse volume V The TOTAL number of particles is fixed at $n \bar{N}_{c}$ τ number of replicas
average number of particles in each replica
$E_{j N}(V)$ is the energy in the j th system QNANTIM STATE, is a function of the volume of the system, and the number of partides (interacting!) in the system. At any instant of time the ar is a distribution, i.e., there are
$n_{N_{j}}$ segrlicas which have N particles and are in the SYSTEM QUANTJM STATE j for N particle.
Note that tho system quantirn states for N^{\prime} particles are different than for N particles.

Mixtures of Particles:
As before, get each lind of particle obeying its own distribution law but with a common β. still non-interacting particles, so each type retains its own energy levels (unchanged by presence of other types of particles)

$$
\begin{aligned}
& t^{\prime} t^{\prime \prime} t^{\prime \prime \prime} \\
& \sum_{i} N_{i}^{\prime}=N^{\prime} \quad t=t^{\prime} \cdot t^{\prime \prime} \cdot t^{\prime \prime \prime} \\
& N^{\prime} N^{\prime \prime} N^{\prime \prime \prime} \\
& \sum_{i} N_{j}^{\prime \prime}=N^{\prime \prime} \\
& \sum_{k} N_{k}^{\prime \prime \prime}=N^{\prime \prime \prime} \\
& \underbrace{\sum_{i} N_{i}^{\prime} \epsilon_{i}^{\prime}}_{E^{\prime}}+\underbrace{\sum_{j} N_{j}^{\prime \prime} \epsilon_{j}^{\prime \prime}}_{E^{\prime \prime}}+\underbrace{\sum_{k} N_{k}^{\prime \prime \prime} \epsilon_{k}^{\prime \prime \prime}}_{E^{\prime \prime \prime}}=E \\
& S \equiv k \ln t=\underbrace{k \ln t^{\prime}}_{S^{\prime}}+\underbrace{k \ln t^{\prime \prime}}_{S^{\prime \prime}}+\underbrace{k \ln t^{\prime \prime \prime}}_{S^{\prime \prime \prime}} \\
& A=E-T S=A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime} \\
& \mu=\left(\frac{\partial A}{\partial N}\right)_{T_{1} V}=\mu^{\prime}+\mu^{\prime \prime}+\mu^{\prime \prime \prime} \\
& \mu^{\prime}=\left(\frac{\partial A}{\partial N^{\prime}}\right)_{T, V, N^{\prime \prime}, N^{\prime \prime \prime}} \text { etc. } \\
& G=N_{\mu}=G^{\prime}+G^{\prime \prime}+G^{\prime \prime \prime} \\
& N_{\mu}^{\prime \prime}+N^{\prime \prime} \mu^{\prime \prime}+N_{\mu}^{\prime \prime \prime \prime}{ }^{\prime \prime}
\end{aligned}
$$

$$
Q=\sum_{\mid \sigma_{j}} e^{-H(\Gamma) \mid k T} E_{j}
$$

Cantrial is no intaral exugy
NVT Q

$$
\begin{aligned}
& Q_{N V T}=\frac{1}{N!} \frac{1}{h^{3 N}} \int d \vec{r} d \vec{\rho} e^{-\frac{x\left(\vec{r}_{p}, \vec{p}\right.}{k_{T}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{V}\left(e^{-\frac{P V}{k T}} \cdot Q_{N V T}\right) \\
& Q_{N P T}=\frac{1}{N!} \frac{1}{h^{3 N}} \frac{1}{V^{0}} \int d V \int d \dot{r} d \vec{p} e^{-\frac{(\gamma+\rho V)}{k T}} \\
& V^{\prime}=\min ^{\prime} \\
& \text { g anherse } \\
& \text { to mate } \\
& \text { Quart } \\
& G=-\ln Q_{N T T} \\
& \text { note tho: } \\
& \text { allows } \\
& \text { fro charges } \\
& \text { in the } \\
& \text { volume }
\end{aligned}
$$

Grand Canorical

$$
\begin{aligned}
& \mu V T \\
& \text { purbatitily } P_{j N}=e^{-\left(x_{5 N} \mu N N\right.} k T \\
& Z=\sum_{N} \sum_{j} e^{\frac{\mu N}{k T}} e^{-\frac{E_{j N}}{k T}} \\
& Z_{M V T}=\sum_{N} Q_{N V T} e^{\frac{\mu N}{k T}}
\end{aligned}
$$

Natriable
for an atorni syatem (no intural

$$
Z_{u v T}=\sum_{N} \frac{1}{N!} \frac{1}{h^{3 N}} e^{\frac{\mu N}{k T}} \int d \vec{r} d \vec{\rho} e^{-X / k T}
$$

