7. Canonical and grand canonical ensembles thermodynamic functions systems with more than one component

CANONICAL and GRAND CANONICAL. ENSEMBLES

A. ISOLATED SYSTEMS:

Constraints: Nand E are conserved for

the one system.
Mole cular partition function $q = \sum g_i e^{-\epsilon i/kT}$

Can calculate thermodynamie quantities and averages for any ideal gas (i.e., non-interacting particles) Microcanonical ensemble of replicas each one with N and E and lack one in a given SYSTEM QUANTUM STATE. At any instant of time there is a DISTRIBUTION, i.e., there are some number of replicas that are in the Ith GYSTEM QUANTUM STATE with energy E

B. CANONICAL ENSEMBLE

Make replicas of the system of interest. Consider an ensemble of replicas, each One in an identical container (and fields) and with the same number of particles. Place replicas in contactthey exchange energy but NOT particles. Entire ensemble of replicas has a tixed energy, that is, the ensemble is isolated At any instant of time there are some number of replicas that are in the 1th system QUANTUM STATE with energy E; (V)

C. GRAND CANONICAL ENSEMBLE

Ensemble of replicas, which can exchange energy with each offen and exchange particles with each offen. Each replica has the same volume V. The TOTAL number of particles is fixed at n Ne average number of particles in each of replicas of particles in each of replicas.

EjN(V) is the energy in the jth SYSTEM QUANTUM STATE, is a function of the volume of the system and the number of particles (interacting!) in the system. At any instant of time there is a distribution, i.e., there are

n Ni replicas which have Ni N particles and are in the SYSTEM QUANTUM STATE j for N particles

Note that the system quantum states for N' particles are different than for N particles.

	Microcanomical	Canonical	Grand Canonical
System Of inderest	N particles energy E volume V	N particles energy E (var.) volume V	N particles (var.) energy E (var.) volume V
quantum statis of each particle	Ei = Etranse + Einternal Quantum nos. Characterizes each (V) = D (V) . F Einand internal	same	same
jth System Quantum STATE	E(V) (= ZE: if non- same for inveracting) Per (= 40)400)4304700 if non-inser acting		EjN (V)
number replicas (very large)	n	h	
distribution	No particles in molecular energy level Ei	nj replicas in the jth system quantum state with energy Ej	nji replicas in jth system grantum Istate for N Particles
energy of System	E (constant)	E (var.), avereg = E	E (var.), averge= E
energy Zensemble	Eans = n E	Eens = n E	Egno = n E
	,		×

	Microcanonical	Canonical	Grand Canonical
no. of fauticles in system	N (constant)	N (constant)	Ncvar.), ave = N
no. of particles in ensemble	Nens = nN	Neno = n N	Nens = n N
constraints, and	particles $\sum_{k} \epsilon_{k} = E - \beta$ $k = \sum_{k} N_{i} \epsilon_{i} = E$	$\sum_{j=1}^{N} \gamma_{j} E_{j} = n \overline{E} - \beta$	$\sum_{N} \sum_{j} n_{jN} E_{j} = n \overline{E} - \beta$
Multiplier	$ZN_{i}=N \propto$	$\sum_{j}^{n_{j}} = n_{ij}$ replices α	$\sum_{N} n_{jN} = n \alpha$
no. of Configu- vations	t = N! Tg; Ni TN:! divide this by N! to correct for indistinguishability	$t = \frac{n!}{n! n!} = \frac{n!}{\pi n!}$	
proba- bility	of finding a mole- cule in the ith level = Ni N	of finding a system in the jth system quantum state	of finding a system in the jth system quantum state with N particles
conditions for most probable distribution	alnt + x dN -B DE dN; + x dN -B DE = 0	$\frac{\partial lnt}{\partial n_{j}} + \alpha \frac{\partial n}{\partial n_{j}} - \beta \frac{\partial (n\bar{E})}{\partial n_{j}}$ $= 0$	$\frac{\partial \ln t}{\partial n_{jN}} + \alpha \frac{\partial n}{\partial n_{jN}}$ $+ \ln \lambda \frac{\partial (nN)}{\partial n_{jN}} - \beta \frac{\partial (nE)}{\partial n_{jN}}$ $= 0$

	Microcanonical	Canonical	Grand Canonical
leads to this lava- tion for most pro- bable distri- bution	CB: $\ln \frac{g_i}{N_i} + \alpha - \beta \epsilon_i = 0$	-lnn; + x - ß=; =0	$-\ln n_{jN} + \alpha - \beta E_{jN} + N \ln \lambda = 0$
define the partition function	molecular -6 : $q = \sum_{i} g_{i} e^{-\frac{C_{i}}{ET}}$	Canonical Q = Ze j	grandonical $Z = \sum_{N} \sum_{j} \sum_{k=1}^{N} e^{\frac{E_{iN}}{kT}}$ $Z = \sum_{N} Q_{N}(T, V) e^{\frac{Nu}{kT}}$
Lagrange multiplies	B = 1/kT ex = N, we will find: x = M. x = M.	$\beta = \frac{1}{kT}$ $e^{x} = \frac{n}{Q}$	$\beta = \frac{1}{kT}$ $e^{x} = \frac{n}{Z}$ $\lambda = absolute$ $activity$ $(u = kT \ln \lambda)$ $i.e. we will find en \lambda = u/kT$
probability of being in a state		$P_{j} = \frac{n_{j}}{n} \cdot \frac{E_{i}/e_{T}}{Q}$ $= \frac{e}{Q}$	$P_{jN} = \frac{n_{jN}}{n}$ $= \underbrace{e^{ijN} - E_{jN}/kT}_{Z}$ $= \underbrace{e^{ijN}}_{Z}$
normaliz probabili density	+		Z=ZZette En

	Microcanonical	Canonical	Grand Canonical
nature Of the distribu- tion law	large no. of molecular energy levels which are populated	distribution is Sharply peaked around E all other states mil	distribution is Sharply peaked around Nard E
nrodel for	isolated appear	closed system in a thermostat (one is the system of interest, the rest constitutes the heat bath)	open system in a thermostat (used for treating statis- tical mechanical problems of systems of
thermody	$E = -N \left[\frac{\partial (lng)}{\partial \beta} \right] V$	$E = \left(\frac{\partial \ln \Omega}{\partial \beta}\right) = kT \left(\frac{\partial \ln \Omega}{\partial T}\right)$ N is under- stood	
functions of the system (ensemble averages)	$ \bar{\epsilon} = \frac{E}{N} = \frac{\text{dlng}}{\delta \beta} $	N is under- Hood	$\overline{N} = \left(\frac{\partial \ln z}{\partial \ln \lambda}\right)_{\beta, V}$
u ver mus	S= lelntmp tmost probable	nS= & Int = lelnt total no. of states ensemble can exist	
	S=E+ kNlmg+EN		S= E+ RlnZ - & Nlnd
	u=-let ln &	$A = E-TS = -kT \ln Q$ fundamental eqn. $M = -kT \left(\frac{\partial \ln Q}{\partial N} \right)$ $P = kT \left(\frac{\partial \ln Q}{\partial V} \right)$	$A = kNT \ln \lambda - kT \ln Z$ fundamentagegn $PV = kT \ln Z$ $M = kT \ln \lambda$

	Microcanonical	Canonical	Grand Canonical
For N Indepen- dent	9	$Q = \frac{g^N}{N!}$	$Z = \sum_{N} \frac{\lambda g^{N}}{N!}$
particles (perfect gas)	$S = \frac{E}{T} + Nk[h(2)+1]$ $A = -NkT[ln(2)+1]$	$S = \frac{E}{T} + Nk \left[eng \right] + 1$ $A = -NkT \left[eng \right] + 1$	Edependson the laws of interactions
	G = -NkTen(2)	G=-NKT ln (2)	between Particles
		i.l., same as microtanonical ensemble	\\ \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
For a two- component	N' non- interacting	NA E; (NA, NB) NB -E; (NA, NB)/ET	NA = ET (alnt) NA = ET (alnt) No = ET/alnt)
System		NB -Ej(N4, NB)/ET Q = Ze	NB = let (dent) OUB T, V, UA S = E + Rent
	S = E' + Ne[eng' +1] + E" + N'e[eng" +1] + E" + N'e[eng" +1]		T -(N ₄ U ₄ +N ₈ U ₈) T
	A= E-TS = E'-TS'+E"-TS"		A= E-TS = NaMa +NaMa -leTln Z
			-kTlnt

Mixtures of Panticles:

As before, get each kind of particle obeying its own distribution law but with a common β . Still non-interacting particles, so each type retains its own energy levels (unchanged by presence of other types of particles)

NPT Rothemal Prosami ensemble $= \sum_{V} \left(e^{-\frac{PV}{kT}} \cdot Q_{NVT} \right)$ QNPT = 1 / NI LON JO SAV SAFAJE E note this allows Rutt for changes in the G = - In QNFT valume Gand Canonical nVT

Novariable

probability Pin = e -(35-UN)

Z=ZZeWze-Egn

Zuvt = ZQWT e #

for an atomic system (no intunal energy)

Zuvt = Z / N! L' l'air e l'ét didie - NET