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Xenon trapped in the alpha cages of zeolite NaA exhibits distinct NMR signals for clusters Xel,
Xe2, Xe 3,..., up to Xe8. Using multisite magnetization transfer experiments, we have measured the
rate constants k mn for the elementary processes that are involved in the cage-to-cage transfer of Xe
atoms in the zeolite NaA, that is, for a single Xe atom leaving a cage containing Xe,, to appear in
a neighboring cage containing Xem_ -, thereby forming Xem . In a random walk simulation, these
rate constants reproduce over a hundred magnetization decay/recovery curves that we have
measured in four samples of Xe in zeolite NaA at room temperature, in selective inversion, and
complementary experiments for all the significantly populated clusters. The simulations also lead to
the correct experimental equilibrium distributions, that is, the fractions of the alpha cages containing
Xe 1,Xe 2,...,Xe8-

I. INTRODUCTION

Intracrystalline transport processes are important factors
in the applications of zeolites to catalysis and selective sorp-
tion. Methods for studying diffusion of molecules sorbed in
zeolites can be separated into two classes depending on the
scale in which the translational motion of the molecule is
followed: 1 2 In macroscopic methods such as uptake rate, fre-
quency response, and flow methods, the length scale is the
crystallite size. The measurements correspond to diffusion
across a large number of unit cells. In microscopic methods
such as pulsed field gradient NMR and neutron diffraction
the length scale is a few tens of an A, comparable to the
dimensions of the cavities or channels. The macroscopic
methods occur in nonequilibrium conditions (concentration
gradients exist) which can provide the transport diffusivity
whereas the microscopic methods tag the molecules and
monitor the displacement of the tagged molecules among the
untagged molecules under equilibrium conditions. This pro-
vides the self-diffusivity. These experimental methods in-
volve complex molecular processes and discrepancies of up
to two orders of magnitude in the derived diffusion coeffi-
cients that present problems to the theorists attempting to
understand such diffusion processes at a molecular level via
molecular dynamics simulations.

There have been estimates of microscopic rates. The
model used is that in which the molecule performs instanta-
neous jumps separated by residence times in sites. For ex-
ample, the width of the quasielastic neutron scattering of
CH4 in zeolite NaCaA provides a mean residence time of
4X O- 10 s.3 In a similar spirit, the mean residence time of a
CH4 molecule in a cavity of zeolite NaA at room temperature
is deduced to be 1.5 or 5X 10-8 s,4 from the transverse re-
laxation time of the proton spins. However, these methods do
not provide a direct experimental measure of rate constants,
the connection with the measured quantity is an indirect one
necessitating a specific interpretation of the observed quan-

tity (which may not be independently verifiable) to provide
an estimate.

A direct measurement of the rate constant for a well-
defined molecular process, namely for a molecule leaving
one cage and appearing in a neighboring cage, would be very
useful. We present in this paper the elementary rate constants
kmn for the cage-to-cage migration of a Xe atom in zeolite
NaA, that is, for a single Xe atom leaving a cage containing
Xe,, to appear in a neighboring cage containing Xem_ l,
thereby forming Xem.

In previous papers we have demonstrated that the 129Xe
NMR chemical shifts of the xenon trapped in the alpha cages
of zeolite NaA are sufficiently large to reveal the individual
numbers of xenon atoms trapped in the alpha cages of the
zeolite. 5 The intensities of the peaks for Xel,Xe2 ,Xe3 ,...,Xe8
lead to the fractions f(n) of the alpha cages containing
0,1,2,3,...,8 Xe atoms. If the adsorbed xenon is at equilibrium
with the gas phase under the conditions of the experiment,
then these give the equilibrium distribution at that tempera-
ture. We have been able to reproduce these equilibrium dis-
tributions in ten samples of Xe in NaA from low loading
(0.45 Xe atoms per cage) to high loading (6.73 Xe atoms per
cage) at 296 and 360 K by grand canonical Monte Carlo
(GCMC) simulations.6 The same GCMC simulations repro-
duce the average 129Xe NMR chemical shifts of each cluster,
including the large incremental shift in going from Xe6 to
Xe7 and between Xe7 and Xe8. The temperature dependence
of these chemical shifts is also reproduced. The GCMC
simulations provide a good accounting of the equilibrium
properties of the system, including the adsorption isotherm
which had been measured in the NMR spectrum of the same
samples. Although the peaks in the NMR spectrum are dis-
tinct, the system is in dynamic equilibrium: cage-to-cage mi-
gration is taking place at a rate that is too slow to collapse
the peaks. In order to monitor this cage-to-cage migration we
propose to tag a particular set of Xe atoms, only the Xe6 for
example. As seen in Fig. 1, when a single Xe atom leaves the
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tivity may be controlled independently, without changing the
pulse power. Because the individual peaks are well resolved,
it is possible to selectively excite one cluster at a time. Sev-
eral methods of analysis of the data for multisite exchange
are in current use. 10 't t It has been shown that the magnetiza-
tions M in a selective inversion recovery experiment on a
chemically exchanging system follow the modified Bloch
equations, conveniently written in matrix form

dNldt=KM+Me, (1)

where Mi(t) is the z magnetization of the ith site at time t,
MW=Mi(o)/T11 , Mi(-) is the equilibrium magnetization at
the ith site, and Tli is the spin lattice relaxation time for
magnetization at site i. The n X n matrix K has elements K
for i 0 j while the diagonal elements are given by

(2)

PIG. 1. A schematic representation of a jump event in which one Xe atom
leaves the Xe6 cluster and jumps into a neighboring cage containing the Xe3
cluster. The elementary rate constant for this process is called k46. When, as
shown, the atoms in the Xe6 cluster are labeled at time zero, the label can be
tracked as it appears in the other clusters such as Xe5 and Xe4 . Na+ ions in
the lattice are depicted by + signs except for the unique one which is shown
as a small sphere.

cage containing the tagged cluster to jump into a neighboring
cage (in this example) containing a Xe3 cluster, the tag dis-
appears from the Xe6, and appears in the Xe4 and the re-
maining Xe5 . Since it is the number of Xe atoms that are
trapped together that determines its resonance frequency in
the spectrum, the tag can be followed as the tagged atoms
become part of various Xen clusters. The simplicity of the
system allows us to attach a detailed microscopic picture to
the individual microscopic rate constants that are associated
with the elementary steps of cage-to-cage migration such as
the one illustrated in Fig. 1. The use of related NMR tech-
niques to study the rates of cage-to-cage migration of Xe
atoms in NaA were ongoing concurrently in two laboratories:
Pines in Berkeley and ours. Both groups reported their re-
sults in the same symposium in March 1993.7,8 The Pines
results have been published, and we cite explicitly in this
paper the specific areas of overlap.

II. METHODS

The study of chemical exchange by monitoring the trans-
fer of polarization can be carried out by many techniques.
Pines et al. have used two-dimensional exchange spectros-
copy to study this system.8 Another possibility is a one-
dimensional experiment in which one selectively inverts the
magnetization at site A and monitors the recovery both of
this resonance and that of sites B, C, etc., with which it is
exchanging. The use of the DANTE (delays alternating with
nutations for tailored excitation) sequences for selective
inversion9 has the advantage that total flip angle and selec-

The phenomenological rate constant K J describes the
pseudo-first-order exchange rate from site i to site j. The
particular system of Xe clusters trapped in zeolite NaA alpha
cages is simpler than others in which multisite magnetization
transfer experiments have been applied in that there are no
cross relaxations between clusters other than chemical ex-
change. On the other hand this system is more complex than
other multisite magnetization transfer experiments in that the
interpretation of the phenomenological rate constants in
terms of microscopic elementary rate constants is not trivial,
that is, the larger phenomenological rate constants are a com-
posite of several microscopic rate constants. The microscopic
rate constants are the interesting quantities, of course, the
rate constants associated with the transfer of one Xe atom
from one cage into a neighboring cage. The complementary
experiment in which the other signals are selectively inverted
provides another set of independent combinations of the un-
known phenomenological rate constants. The advantage of
these magnetization transfer experiments is that each experi-
ment covers the maximum possible temporal and dynamical
ranges since M(t) can vary from -M(x) to +M(-), conse-
quently a maximum of experimental information about the
rate constants can be obtained. It has been demonstrated
that the signal recovery curves from the n selective inversion
experiments and the n complementary experiments can be
analyzed simultaneously to determine the n(n - 1)/2 pos-
sible exchange rates in a general n-site case. The n different
relaxation rates will be measured independently by separate
experiments, although in principle, all rates (including the
relaxation times) could be determined from the n x n curves
since there will be a surplus of information.

The simulations of the magnetization decay/recovery
curves are carried out in a Monte Carlo scheme. Five thou-
sand alpha cages represent the system. Suppose we are given
a set of elementary rate constants; we use the notation that
kmn is associated with the rate of transfer of a single Xe atom
from a cage containing the cluster Xen into a neighboring
cage containing the cluster Xemi l thereby making the new
cluster Xem. This is consistent with the notation of Led for
the phenomenological rate constants.12 We assume that the
jumps are uncorrelated; that is, a Xe atom attempting a jump
out of a cage does not need to know whether another Xe is
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attempting a jump at the same time. A time step is chosen (r)
such that none of the probabilities Pmn =Trkmn or dJT1 exceed
0.50. The experimental relaxation times are used for the
simulations in this paper. During this fixed time increment r,
the transfers out of each of 5000 cages are carried out ac-
cording to the following algorithm:

(I) Each Xe atom in the cage i is allowed one attempt to
leave.

(2) If the atom carries a beta spin, relaxation is contem-
plated by comparing a random number r, picked from a
uniform distribution between 0.0 and 1.0, with the spin con-
version probability riT1.

(3) A jump is contemplated; a recipient cage j is chosen
randomly from the other 4999 cages. If j is full (contains
Xe8) the attempt to jump into it fails. If not full, the random
number r2 is compared with the probability of the event
(i-kinn) where m is one more than the number of Xe atoms in
the recipient cage (that is, the new cluster to be formed is
Xe.).

(4) Go on to the next atom in the cage i.
(5) The process goes on in all 5000 cages in sequential

order.
(6) This constitutes one time step.
Each simulated Dante or complementary magnetization

transfer experiment is set up as follows. (a) The appropriate
number of Xe atoms (according to the (n) of the sample) are
distributed uniformly into the 5000 cages. (b) The approach
to thermal equilibrium distribution is simulated by jumps as
outlined above, except that spins are not assigned and relax-
ation is not considered. This is typically done in 2000 time
steps. The thermal equilibrium distribution reached is the
starting point for the simulation of the magnetization experi-
ment. (c) Beginning with the thermal equilibrium distribu-
tion of particles among the 5000 cages, the initial conditions
(magnetization in each cage at time zero) are set according to
the experimental efficiency of the actual Dante or comple-
mentary experiment. That is, a known % of the alpha spins in
cages containing Xen are converted into beta spins to prepare
the zero-time conditions. (d) The transfers between cages are
carried out as described above for a total number of time
steps equal to a duration of 3 s. After each time step, the total
magnetizations of Xel ,Xe2 ,...,Xe8 are stored. The magnetiza-
tion decay/recovery curves are obtained by signal averaging
over 25 repetitions, that is, (c) and (d) are repeated to accu-
mulate 25 scans of the Dante experiment (or complementary
experiment).

The simulation of the equilibrium distributions in all the
samples is carried out using the same k matrix. The part of
the algorithm dealing with the approach to thermal equilib-
rium is carried out for 1000 time steps and f(n) data are
accumulated over another 1000 time steps, to find the equi-
librium f(n) to which the set of rate constants lead in the ten
samples with (n) ranging from 0.45 to 6.73. The simulation
of the self-diffusion is carried out using the same k matrix in
a simulation box of 10X l0X 10 cages using periodic bound-
ary conditions.

111. EXPERIMENT

Samples contain accurately known amounts of xenon
and NaA in a known sample volume. The tube volume is
approximately 0.25 mL containing about 40-50 mg of zeo-
lite. The zeolite is dried (under thin-bed conditions) at 300-
350 'C for at least 16 h. After preparation the sample is
ramped down in temperature in a regulated oven from 300 to
80 'C in about 5 days. After a subsequent two weeks the
sample becomes equilibrated at room temperature. In this
manner, equilibrium distributions of Xe in the zeolite cages
are reached much faster than the 3 months required without
temperature programming. Enriched 129Xe (>99%, ICON,
Mount Marion, NY) was used.

At equilibrium our samples frequently have significant
amounts of Xe both adsorbed and in the gas. A mass balance
can be carried out by using the chemical shift of the gas to
deduce its density, the number of moles in the gas is calcu-
lated by knowing the free volume occupied by the gas, and
this is subtracted from the known number of moles of xenon
introduced into the sample to obtain the number of Xe atoms
contained in the known number of zeolite cages. This gives
(n), the average number of Xe atoms per cage.

The magnetization transfer experiments were carried out
in the available 10 mm probe on a Bruker AM-400, 9.4 T
high resolution FT NMR spectrometer. Another set of experi-
ments were carried out on a Varian VXR-300S, 7 T spec-
trometer. Selective inversion of a single peak was performed
using a modification of the traditional DANTE experiment. 9

A series of sixteen 7r/16 pulses produce the selective 7r pulse,
with a cyclical 90° phase shift between each pulse pair. In
this manner the selective frequency is not at the central spec-
trometer frequency, but at offset frequencies (4n + l)v where
n =0, + 1, 2,..., and v can either be positive or negative de-
pending on the sense of the phase cycling. This is a particu-
larly convenient arrangement since we could perturb a single
peak 7000 Hz off resonance and have no other perturbation
within 28 000 Hz of our chosen frequency. Typical param-
eters were a pulse train of 16 pulses of 3.0 ps, separated by
55 pis delays with a cyclical phase shift of 90° between suc-
cessive pulses. This achieved a selective peak inversion.
Evolution times were selected to explore mainly the first 200
ms after preparation. The "complementary" experiments
consist of preparing a system in which all peaks save one are
inverted. This is accomplished by first carrying out the
DANTE preparation just described, followed by a composite
pulse [(9 0 )x-(1 8 0 )y-( 9 0 ),] utilized because of the 40
kHz sweep width of these experiments.

As in any relaxation experiment, a set of spectra are
produced covering the domain of seven or more selected
evolution times plus 0 and x. Block averaging of 16 scans
with recovery times of 30 s between scans were used. Typi-
cal total scans for the nine or more variable delay times were
1000-10000 scans, depending on sample, peak intensity,
and the desired signal-to-noise ratio in the Bruker spectrom-
eter. On the Varian, we were able to obtain better signal-to-
noise ratios with the superior filling factor of a 5 mm probe.
Eleven to fifteen variable delays were chosen and typically
512 scans. The 129Xe spectrum consists of several peaks at-
tributable to Xe1 ,Xe2 ,Xe3 ,...,Xe8 clusters. The individual
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FIG. 2. A typical magnetization experiment. This is a DANTE experiment
on Xe8 in a sample with (n) =6.54 Xe atoms per alpha cage of zeolite NaA
at 300 K. The delay times are (from left to right): 0, 2, 5, 10, 15, 20, 30, 60,
90, 130, 250, 400, 800, 1500, 2500, 3000 ms.

peaks are typically about 9-10 ppm wide. Adjusting the in-
terpulse delays so that the selective region is 9500-11 500
Hz offset from the carrier frequency allows for most of the
peak to be inverted. The bandwidth of excitation corresponds
to about 600-900 Hz at this offset frequency. Brief explora-
tion at smaller offset frequencies produced excitation band-
widths of as small as 200 Hz which may not be a minimum.
There is a clear indication of hole burning, that is, chemical
shift dispersion is a major source of the linewidth in this
system. Figure 2 is an example of spectra taken at 16 delay
times from 0 to 3.0 s.

The 1 K data are zero filled to 4 K, transformed with 300
Hz line broadening, and phase corrected. The substantial
first-order phase correction (similar for all spectra) resulted
in the necessity of performing a common base-line correc-
tion. The transformed spectra were transferred by FASTRAN

(T. Farrar, University of Wisconsin). The resulting binary file
was converted to an ASCII input for a commercial spectral
deconvolution package (GRAMS/386, Galactic Industries). In
order to obtain reliable intensities as a function of time, peak
position, width, percent Lorentzian/Gaussian were fixed to a
common value for each set of 9-16 spectra corresponding to
9-16 delay times that constitute an experiment. In those
cases where the inversion was less than 100% efficient, the
perturbed peak was fit as the sum of two calculated peaks.
The areas from the fitting process, the magnetizations
M(Xen), were normalized such that sum of the areas from all
the peaks in a given sample at equilibrium equals 1; that is,
the normalized M(Xen) at equilibrium is nf(n)l(n). Ninety-
eight independent magnetization decay/recovery curves were
obtained at 300 K for four samples with average occupancies
3.94, 5.80, 6.43, 6.73 Xe atoms per cage on the Bruker spec-
trometer. The DANTE experiments for the three samples
with average loading of 3.94, 5.80, and 6.54 Xe atoms per
cage were repeated using the Varian spectrometer.

The analysis of the decay/recovery curves requires the
values of the T, relaxation times for Xe in the zeolite. For
these, inversion recovery measurements were carried out on
the samples using the Bruker AM-400. For a given sample, a
common relaxation rate is observed for all Xen peaks, irre-
spective of n but the apparent T, depends on the average
number of Xe atoms/cage in the sample. This is consistent

with (a) T, being a function of n and (b) the communication
between zeolite cages being sufficiently fast at 300 K to av-
erage the relaxation times. At 200 K, different T, values
were observed for each n. These relaxation effects will be
considered in a later report. For the purpose of our analysis,
relaxation rates RI(n)= l/T1 (Xen) appear to be 0.1-0.3 s-,
and are much lower than magnetization transfer rates at room
temperature. Consequently we used TI(Xe,,) of 9.4-3.3 s,
varying linearly between n = I and 8. These values are con-
sistent with the distribution-weighted averages which are ob-
served in the inversion recovery experiments and with the
long time (beyond 2 s) behavior of the magnetization decay/
recovery curves.

IV. RESULTS

A. The relations between the phenomenological rate
constants and the microscopic rate constants

The phenomenological rate constants Kmn in Eq. (2) can
be derived in terms of linear combinations of the rate con-
stants kmn for the elementary steps (individual hops from one
cage to another). A simple physical picture of the micro-
scopic events which contribute to the overall changes in
magnetization that can be observed provides the relation-
ships. One elementary step is shown in Fig. 1 that is charac-
terized by a rate constant k46

k6

Xe 6+Xe3 - Xe5+Xe4

in which one Xe atom leaves the Xe6 cluster and jumps into
a neighboring cage containing the Xe3 cluster, thereby form-
ing the new cluster Xe4 and the remainder cluster Xe5. Sup-
pose Xe6 is polarized, then the microscopic event pictured in
Fig. 1 contributes to the terms -K 56 M 6 and -K4 6 M6 in the
dM6 /dt equation, +K56 M6 in the dM5 /dt equation, and
+K4 6 M6 in the dM41dt equation. Suppose Xe3 is polarized.
This same microscopic event contributes to the term
+K4 3 M3 in the dM41dt equation and -K4 3 M3 in the
dM3 1dt equation. It can easily be seen that all the micro-
scopic events with rate constants ki 6, m = 1,2,3,...,8 contrib-
ute to the K 56M6 term in the dM6 /dt and dM 5/dt equations,
since one Xe atom jumping out of a cage containing Xe 6
always leaves an Xe5 cluster no matter what cage it is jump-
ing into. Similarly, it can be seen that all the microscopic
events with rate constants k4 n, n = 1,2,3,...,8 contribute to the
K4 3M 3 term in the dM4 1dt and dM 31dt equations since any
jump into a cage with Xe3 makes Xe4 . On the other hand,
only this microscopic event illustrated in Fig. 1 with rate
constant k46 can contribute to the K 46M 6 term in the dM6 /dt
and dM 41dt equations. From a consideration of the various
microscopic events we derive the following relationships:

K4 6 =k 46f(3) (3)

since the probability of finding a Xe3 in a neighboring cage is
just f(3) (the fraction of the alpha cages containing Xe3).

K 56 =k 5 J6f(4)+5Yiki~f(i- 1),

K 6 5 =k 6 4f(5) + Yik6 Jf(i)

In general,

(4)

(5)
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Kmn =k,,pf(m-1) provided In-ml>1, (6) the curves are the ones on the band below and above the
diagonal of the K matrix since these are made of sums over

Km,m+I=kmm+If(m -)+m kim+If(i- 1), (7) eight terms. All other K values are much smaller, and these

Km~m-=kmm- If(m- )+ + Vikm.f(i). (8) are precisely the ones that have the direct relationship to the
8 microscopic rate constant, that is K68 = k68 f(5) for example.

Pines et al. have derived analogous equations,8 although Under certain conditions, it may be possible to obtain a di-
their notation is different from ours. However, they used the rect measure of these, but the experimental precision re-
approximation Km,,n+ I= mkm, + l instead of Eq. (7). quired is very demanding. Furthermore, the phenomenologi-

We can independently verify the relationships expressed cal rate constants are dependent on the sample because the
in Eqs. (6)-(8). Given a set of microscopic rate constants distributions f(n) are different from sample to sample.
km, in an 8x8 matrix, we derive the values of Kmn from the Therefore, even if we had been able to obtain a complete set
known f(n) of the sample using Eqs. (6)-(8). Then we can of K matrix elements for one sample, this would not have
solve the simultaneous differential equations (1) by matrix helped us determine the set of phenomenological rate con-
methods for the initial conditions, and plot out the decay/ stants for another sample. On the other hand, the microscopic
recovery curves. At the same time, we can use the given kmn rate constants are independent of sample and depend only on
rate constants in the Monte Carlo simulation to produce the the temperature. One k matrix should reproduce all 138 re-
decay and recovery of magnetization for the same initial con- covery curves for four samples and also all the equilibrium
ditions. Except for statistical errors, the curves should be distributions for all ten samples.
superimposable for all 138 curves. Indeed we find this to be As mentioned above, a measurement of one of the phe-
the case. Therefore, the relations derived between the set of nomenological rate constants that is directly proportional to
microscopic rate constants kmn and the phenomenological the microscopic rate constant would be of great value. With
rate constants Kmn are correct. even one such constant one could assign an absolute magni-

There are constraints on the Kmn and the kmn values tude to one of the elements in one of the columns of the k
from principles of detailed balance. For example, it is easily matrix which is independent of the values obtained from the
shown that overall agreement with experiment that is obtained from the

Kmn mnf(m) combination of a large number of microscopic rate constants.
K-. nf~n) (9) The experiment involves taking data at very early times

Knm nf(n) when the magnetization change is dominated by just the one
It is easily shown that these relations are satisfied by Eqs. Kmn for some In-m1>l. Since the value of this phenom-
(6)-(8). Furthermore, the microscopic rate constants are also enological rate constant is small, the change in the magneti-
subject to the relations zation is also very small. At very early times before any of

the other terms in the modified Bloch equation have taken
kmn mf(m)f(n - 1) (10) over, the peak intensity versus time will be nearly flat. We
knm nf(n)f(m-1 ) did attempt this experiment and we find that even in the most

which are merely expressions of the relationships between favorable case the small slope in the interval 0-5 ms cannot
rate constants and equilibrium constants. The microscopic reliably provide a value of the rate constant. Therefore, the
rate constant for the reverse process of the example in Fig. I use of simulations to find the set of rate constants for this
is k64, as in particular multisite magnetization transfer is the only reason-

k64 able approach.

Xe4-l-Xe5 -~ Xe3+Xe6. C. The importance of being at thermal equilibrium
From the several relationships generated by Eq. (10) it is
possible to deduce the lower triangle of the rate constant Equation (1) applies to measuring rate constants in a
matrix k entirely from the initial guess of the upper triangle. system at equilibrium, and Eqs. (6)-(8) assume that the
No relationship of this type provides information on the di- sample is at the thermal equilibrium mass distribution and
agonal elements knn . One final piece of information: the en- that the mass distribution undergoes no net change during the
tire k matrix can be multiplied by a factor without affecting experiment. It should be noted that complete superposition of
the resulting equilibrium distributions, but the magnetization decay/recovery curves calculated from Eq. (1) using a given
recovery curves are sensitive to the absolute magnitudes of k matrix with the magnetization curves resulting from the
the k matrix elements, not just their relative magnitudes. Monte Carlo simulation using the same k matrix will be

obtained only if no net mass transfer is taking place during
the magnetization transfer. The simulation keeps track of

directly? magnetization changes in Xel through Xe8 that are appropri-
ate to whatever net mass transfer is going on among the

It is possible, in principle, to analyze the recovery curves clusters. In Fig. 3 we show the superposition of the simulated
by using an iterative multiparameter fitting approach, using decay/recovery curve with that calculated by solving the dif-
the algorithms developed by Led et al. in their program ferential Eq. (1) using phenomenological rate constants K
MTFIT.1 3 We did this as well. However, there is an overriding obtained from Eqs. (6)-(8) with f(n) appropriate to the
reason why this method would be very difficult to use by equilibrium distribution obtained with the rate constant ma-
itself. One is that the K values that dominate the behavior of trix k. In contrast, in the bottom of Fig. 3 we show an ex-
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FIG. 3. A comparison of magnetization transfer with and without accompa-
nying mass transfer. The top figure shows a constant f(8), no net mass
transfer from one type of cluster to other types. The simulated "observed"
magnetization decay/recovery curve (0) is the same as the theoretically
expected (+). The bottom figure shows the simulated magnetization curve
that would be observed when accompanied by net mass transport (0) is
different from that calculated from the magnetization curve that would be
observed if the equilibrium mass distribution is the same as the initial mass
distribution (+). The changing fraction of cages containing Xe. at each time
step, f(8), is shown (-).

ample in which the initial mass distribution is different from
the equilibrium mass distribution toward which the rate con-
stants are driving the system. In the bottom of Fig. 3, the
fraction of the 5000 cages that contain Xe2 are shown (-)
and the net mass transport accompanying the magnetization
recovery can be observed. The drift toward the equilibrium
mass distribution appropriate to the rate constants, away
from the initial mass distribution, accompanies the recovery
of magnetization and distorts the decay/recovery curve. This
could happen if the initial mass distribution is appropriate to
a higher or lower temperature than the temperature at which
the magnetization transfer experiments are being carried out.
For the given k matrix, the simulated curve (0) is what
would be observed. The calculated curves (+) are those ob-
tained from solving Eq. (1) using the same k matrix and the
equilibrium f(n) at temperature T2, that is, the curve that
would have been observed if the magnetization transfer ex-
periments had been carried out at the temperature T2 of the
mass distribution. Obviously, the rate constants that would
have been obtained from the lower figure curve (*) are not
the same as the rate constants that would have been obtained
from the curve (+) nor are they the same as would have been
obtained from both (0) and (+) in the upper figure, where
the magnetization transfer and the equilibrium mass distribu-

tion are for the same temperature T. The conclusion from
Fig. 3 is that it is important to carry out the magnetization
transfer experiment with a sample that is at the equilibrium
mass distribution for the temperature of the experiment. Oth-
erwise, inaccurate rate constants (which include the effects
of net mass transport) may be obtained. A variable tempera-
ture study must therefore use samples that are at their equi-
librium mass distribution at each temperature. On the other
hand, this particular simulation presents an extreme case. In
actual nonequilibrium experiments, there are concentration
gradients (not simulated here) which exist on a macroscopic
scale. These gradients prevent the system from responding
on a time scale as short as this simulation exhibits. In the
simulation each cage is treated as being equally probable in
communicating with all the other 4999 cages, rather than
there existing local, nearly steady-state dynamics such that
the system approaches equilibrium on a time scale of days,
as actually found in our sample preparation.

D. The rate constants that drive the hypergeometric
distribution

The limiting situation offered by the strictly statistical
distribution (the hypergeometric distribution) may provide
some insight. We have already seen5' 6 that the experimental
equilibrium distributions, especially at high loading, do not
agree with a hypergeometric distribution. Nevertheless, the
statistical distribution provides a limiting case against which
we can compare the actual data. We have seen in Eq. (10)
that detailed balance determines the ratios of the conjugate
rate constants, kmn/knm. Since the hypergeometric distribu-
tion provides an analytical expression for the f(n), then the
ratios knnlk, 2 that are compatible with the hypergeometric
distribution can be derived from Eq. (10). These ratios are as
follows, the ratios shown are k(rowcol/k(col,row):

I
2 7/8
3 6/8
4 5/8
5 4/8
6 3/8
7 2/8
8 1/8

2 3 4 5 6 7

6/7
5/7 5/6
4/7 4/6
3/7 3/6
2/7 2/6
1/7 1/6

4/5
3/5
2/5
1/5

3/4
2/4
1/4

2/3
1/3 1/2

An interesting characteristic of these ratios is that they sys-
tematically decrease in going down each column and left to
right across each row. The discrepancy between the rate con-
stants for the forward and back elementary steps becomes
more pronounced with increasing difference in the cluster
sizes in the "from" and "to" cages.

Using the hypergeometric distribution constraint on the
ratios of the microscopic rate constants, and assuming
k88 k78 ... ~ =k 8 = we find that we can generate the
entire matrix of rate constants that are consistent with this
statistical distribution. A k matrix consistent with the hyper-
geometric distribution is as follows:

J. Chem. Phys., Vol. 101, No. 3, 1 August 1994

1 780

l

Downloaded 29 Jan 2007 to 149.132.99.84. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Jameson, Jameson, and Gerald II: Migration of Xe in zeolite

Leaving
Forming

2
3
4
5
6
7
8

2 3 4 5 6 7 8

1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 i1 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

We find then, that the strictly statistical hypergeometric dis-
tribution is consistent with all elements in a column being
the same. This is true for all columns and means that the rate
of leaving a cage depends only on the occupancy of the
departure cage and not the occupancy of the destination
cage. It should be noted that, to produce the strictly statistical
hypergeometric distribution, the rate constant for a single Xe
atom leaving a cage containing Xen increases with increasing
n.

Of course, these are only relative values; the whole k
matrix can be multiplied by an arbitrary factor and the re-
sulting equilibrium distribution would still be the hypergeo-
metric distribution. We verified that when the above k matrix
is used in the simulation program for samples ranging from
(n)=0.45 to 6.73 the simulations arrived at the hypergeo-
metric distributions appropriate to the value of (n) in each
case. The experimental distributions at room temperature are
significantly different from the hypergeometric distribution
for the five samples with (n) greater than 4.0. The rate con-
stants that produce the hypergeometric distribution cannot
reproduce the experimental magnetization decay/recovery
curves. The multiplicative factor can be adjusted so as to
reproduce selected curves, but the predicted curves for all
other experiments then bear little similarity to the experi-
mental ones. Some examples are shown in Fig. 4. Since we
have 138 curves to compare with, it is easily proven that the
above rate constants are not correct. Nevertheless, it is in-
structive to see this limiting case because the experimental k
matrix should differ from this one in ways that can be pro-
jected by physical insight. If indeed, the distribution at very
high temperatures (523 K, for example) are nearly the same
as the hypergeometric distribution, 14 then at room tempera-
ture the ratio of k matrix elements km2/kml would probably
be less than predicted by the hypergeometric distribution,
because of the attractive interaction between the two Xe at-
oms that is not present for a single Xe atom in a cage. We
expect, by the same reasoning, that the difference between
km3, km4,..., or km8 and kmi would be more pronounced than
hypergeometric. If this is the case, then, from the "hypergeo-
metric" rate constants above, we might expect to find that
km4/kml <8/5, km3/kmi <8/6, km2 /kmi <8/7, and also
km8/kml <8, km7/ km <4, and km6 /kmi <8/3. Of course, it is
the differing energies of activation for each of the
kmi,km2,...,km8 that make such distinctions. In the limit of
very high temperatures, the rate constants might well relate
to each other in the hypergeometric sense.

1 2 3 0 1 2
t, seconds t, seconds

3

FIG. 4. The rate constant matrix that drives the hypergeometric distribution
(see the text) leads to magnetization recovery curves that are drastically
different from experiment.

E. The microscopic rate constants
Next we need to know whether or not we can find a set

of microscopic rate constants capable of reproducing the 138
experimental recovery curves obtained from four samples
and also the experimental equilibrium values of f(n) for all
ten samples. To start with, we make the simple assumption
that the probability of a Xe atom leaving a cluster Xen df-
pends only on the nature of Xen and not on the occupancy of
the cage it will jump into, that is k1n=k2 n=k3 n= k8n
This is a reasonable assumption for small m certainly, be-
cause the entryway into the cage containing Xem -1 for
mr-I=0 to 4 probably looks the same to the Xe atom at-
tempting to cross over. On the other hand if the receiving
cage is overcrowded, containing six or seven atoms, or even
eight atoms, there is a significant probability that the the
entryway may be blocked during the jump. Therefore, we
might expect that the simple assumption that the rate of leav-
ing a cage with Xen is independent of the occupancy of the
destination cage may not be valid for large m, since indeed
we are assuming the rate goes to zero for m =9.

The ratios of the rate constants can be obtained from
experiment directly. As seen in Eq. (10) each ratio kmnIknm is
usually determined by four values of f(n). Those samples
that have large enough values of f(n), f(m), f(n - 1), f(m
- 1) will provide reliable ratios. Therefore it is possible to
arrive at some set of k ratios that are consistent with expert-
mental distribution of occupancies, but certainly not possible
to determine all such ratios. Since many samples have some
f(n) values that are too small to be reliable we have incom-
plete information. The hypergeometric values however ex-
hibit the same trends in the k ratios going down and to the
right of the array. This allows us to make estimates of those
ratios that are not experimentally known. We started out with
the premise that the kmn are the same for a given n, assumed
a value of km ,I then used the k ratios to determine the next
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TABLE ID The microscopic rate constants (s-1) used in the simulations. The
notation used is that km, is the rate constant for the event in which a single
Xe atom leaves the cage containing the cluster Xe, jumping into the neigh-

k,,,,

boring cage to form cluster Xe,,, Xe_ + Xe__ -I Xe_, - + Xe, .

Leaving

Forming 1 2 3 4 5 6 7 8

1 0.300 0.320 0.325 0.322 0.477 0.892 1.20 2.50
2 0.351 0.320 0.325 0.322 0.477 0.892 1.20 2.50
3 0.355 0.360 0.325 0.322 0.477 0.892 1.29 2.50
4 0.289 0.364 0.319 0.322 0.477 0.892 1.20 2.50
5 (0.286) 0.381 0.334 0.322 0.477 0.892 1.20 2.50
6 (0.268) 0.357 0.341 0.322 0.477 0.892 1.20 2.50
7 (0.108) (0.120) 0.118 0.144 0.147 0.277 1.20 2.50
8 (0.100) (0.115) (0.115) (0.115) 0.191 0.095 0.456 2.50

column of numbers. This process can be propagated from
one column to the next, sequentially. This provided a first
guess for a k matrix for the simulations. The final k matrix of
microscopic rate constants that we used in the simulations to
compare with experiment is given in Table I. In Figs. 5-7 we
show a few of the 138 decay/recovery curves obtained by
simulation using the assumed k matrix (0), by solution of

1 2 3 0 1 2
t, seconds t, seconds

0 EXPT
- SIMULATION
+ SOLVED

DIFFERENTIAL
EQUATIONS

DANTE on xe,

3 DANTE on Xe 4

00

0 1 2
t, seconds

3 0 1 2
t, seconds

FIG. 6. The same symbols as in Fig. 5. These curves are some of the
magnetization decay/recovery curves for Xe5 , Xe6 , and Xe7 in the sample
with (n)=5.80 at 300 K.

3

FIG. 5. The simulations using the rate constant matrix in Table I shown as
(0) connected by straight lines, are compared with the magnetization recov-
ery curves calculated from the phenomenological rate constants K which are
derived from the matrix k in Table I by Eqs. (6)-(8) (+), and with the
experimental data points (LI). These curves are some of the magnetization
decay/recovery curves for Xe4, Xe5 , and Xe6 in the sample with (n)= 3.94
at 300 K. The type of experiment and the perturbed peak label each
subfigure.

Eq. (1) with the K values derived from this k matrix (+), and
from the experimental data (E). In each case we have veri-
fied the lack of net mass transport; the fraction of the 5000
cages that contain n Xe atoms at each time step is plotted
(not shown here) and this shows no systematic drift.

These figures (5-7) were selected to indicate the variety
of curves which we have observed. Curves for DANTE and
complementary experiments were obtained in the Bruker
AM-400 spectrometer for four samples (98 curves) and
DANTE experiments for three samples (40 curves) in the
Varian VXR-300S. Most of the curves from the complemen-
tary experiments are purely recovery curves and for these the
experiments and simulations are near coincident. Only a few
of those are shown here. The more demanding comparisons
are for the curves which are decay followed by recovery,
exhibiting a bowl, typical of the curves from the DANTE
experiments. The important thing to note is that where there
might appear to be a systematic deviation between the simu-
lation and the experiment in the figures, this is not really the
case. For each curve observed in both spectrometers, the
simulation is bracketed by the two sets of experimental
points. In other words, the agreement between experiment
and simulation is within the combined random and system-
atic experimental errors.

As further evidence we present in Fig. 8 the equilibrium
f(n) values reached by simulations using the k matrix given
in Table I, in comparison with the experimental equilibrium
distributions for the ten samples. We find that the k matrix
given in Table I which reproduces the 138 decay/recovery
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DANTE on Xe8

o EXPT
- SIMULATION
+ SOLVED

DIFFERENTIAL
EQUATIONS

DANTE on Xe7

0 -o
0.4~

Complementary

E 1 on Xe 8

0.3

o 1 2 3 c

t, seconds
0 1 2

t, seconds

FIG. 7. The same symbols as in Fig. 5. These curves are some of
magnetization decay/recovery curves for Xe6 , Xe7 , and Xe8 in the sa
with (n)=6.54 at 300 K.

0.6

0.4

0.2

0.0
0.6

0.4

0.2

0.0

0.6

0.4

0.2

0,0

0.6

0.4

0.2

0.0

<n>-0.4

EXP II<n>= 1.161

_ curves for four samples at 300 K also reproduces the equi-
librium distributions of all ten samples. The deviations from
the equilibrium f(n) are all less than 0.03; the overall stan-
dard deviation is 8.3X 103 . The agreement with experiment
is within experimental error.

In examining the k matrix in Table I we note several
important characteristics. The rate constant associated with a
single Xe atom leaving a particular Xen is relatively indepen-
dent of the destination, the elements in each column being
fairly similar. This is not true when the destination cage is
already highly populated. We note this in k73 , k7 4, k7 5, and
k76 and in k8 5, k86 , and k87 . These rate constants are much
smaller than the others in the same column and the experi-
mental results are sensitive to them. Other rate constants
such as k7l, k72 , k81, k8 2, k83 , and k84 are also made smaller
by our assumed k ratio, but the experiments are not sensitive
to these because we have no samples containing observable
peaks for both Xe 8 and Xel, etc. In Table I, these rate con-
stants which are not tested directly by experiments are en-
closed in parentheses. These are used in the simulation but
only affect the details in the approach to the equilibrium
distribution (which is not observed experimentally). It is dif-
ficult to place error bars on the rate constants in Table I

3 because we have not conducted a complete sensitivity analy-
sis. Some of the relationships among these numbers are quite
precisely known and well tested. Therefore the relative mag-

)f the nitudes are quite precise in some cases. On the other hand,
mple the absolute magnitudes of each one by itself is not nearly as

precisely bracketed by the experiments. Perhaps 20%-30%
error in the individual absolute magnitude would be a con-
servative estimate. At the same time the absolute magnitude
of sums of terms that are represented by the large phenom-
enological rate constants are also fairly well bracketed by the

I<n>=1.46711
<n>=3.21 I

RAT~AL
0 2 4 6 8 0 2 4 6 8 0 2 4 6 B 0 2 4 6 8 0 2 4 6 5

<n>-5.79 <n>=65.0 <n>=6.43 <n>56.54 <n>=6 73

0 2 4 6 8 0 2 4 6 a 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

n n n n n

FIG. 8. The simulated equilibrium distributions resulting from the rate constant matrix in Table 1, for ten samples starting from a uniform distribution at time
zero. The experimental distributions are shown for comparison.
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TABLE II. Phenomenological rate constants for three samples, calculated using Eqs. (6)-(8) and the f(n) at the
simulated equilibrium. Ki (not given here) is related to the off-diagonal values by Eq. (2).

f(n) (n)=3.938

0.005 44 0.036 51 0.099 16 0.199 09 0.303 66 0.253 65 0.094 68 0.007 57 0.000 24
1 2 3 4 5 6 7 8

1 0.341 84 0.001 77 0.001 75 0.002 59 0.004 85 0.006 53 0.013 60
2 1.85442 0.630000 0.011 76 0.01742 0.03257 0.043 81 0.091 27
3 0.035 16 1.885 37 0.942 84 0.047 30 0.088 45 0.118 99 0.247 90
4 0.057 57 0.072 44 1.907 56 1.869 13 0.177 59 0.238 91 0.497 72
5 0.086 91 0.115 79 0.10133 1.954 67 4.408 72 0.36439 0.75915
6 0.067 88 0.090 50 0.086 45 0.081 75 1.976 82 7.468 85 0.634 12
7 0.010 23 0.011 36 0.011 13 0.013 63 0.013 95 0.712 04 17.732 00
8 0.00076 0.00087 0.00087 0.00087 0.001 44 0.00072 0.563 11

f(n) (n)= 5.80

0.000 01 0.000 07 0.001 04 0.009 74 0.064 03 0.249 14 0.478 55 0.183 86 0.013 56
1 2 3 4 5 6 7 8

1 0.195 83 0.000 00 0.000 00 0.000 00 0.000 01 0.000 01 0.000 03
2 5.063 70 0.374 36 0.000 02 0.000 03 0.000 06 0.000 08 0.000 17
3 0.000 37 5.064 14 0.583 76 0.000 50 0.000 93 0.001 25 0.002 60
4 0.002 82 0.003 54 5.066 68 1.045 39 0.008 69 0.011 69 0.024 35
5 0.018 33 0.024 42 0.021 37 5.084 74 2.253 49 0.076 84 0.160 08
6 0.066 67 0.088 89 0.084 91 0.080 29 5.183 38 6.580 31 0.622 85
7 0.051 68 0.057 43 0.056 28 0.068 91 0.070 52 2.969 15 18.459 07
8 0.018 39 0.021 14 0.021 14 0.021 14 0.035 07 0.017 47 1.485 00

f(n) (n)=6.543

0.000 00 0.000 00 0.000 02 0.000 50 0.007 69 0.065 70 0.390 56 0.448 42 0.087 12
1 2 3 4 5 6 7 8

1 0.125 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00
2 7.766 50 0.245 25 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00
3 0.00001 7.76651 0.39489 0.00001 0.00002 0.00002 0.00005
4 0.000 14 0.000 18 7.766 66 0.713 65 0.000 45 0.000 60 0.001 25
5 0.002 20 0.002 93 0.002 57 7.769 00 1.091 29 0.009 23 0.019 22
6 0.017 58 0.02344 0.022 39 0.021 17 7.79798 4.64923 0.16425
7 0.042 18 0.046 87 0.045 93 0.056 24 0.057 55 6.320 65 16.951 98
8 0.044 84 0.051 57 0.051 57 0.051 57 0.085 54 0.042 60 3.666 33

overall shapes of the multitude of the decay/recovery curves.
The k matrix in Table I can be compared with the k

matrix reported by Pines et al.8 At the outset they had as-
sumed k. to be independent of m and their values obtained
from two-dimensional spectra at room temperature [from
their Fig. 3(a)] are: kmI=0.09, km2 =0.08±0.02, km3 =0.05,
km4 =0.06±0.02, km5 =0. 110.07, km6 =0.26±0.10,
km7=0.82+0.15 s-1. These are of the same order of magni-
tude as the rate constants we have arrived at, but our values
are systematically larger than theirs, in most cases by a factor
of 3-5. They assumed identical intrinsic rate constants re-
gardless of the number of Xe atoms in the destination cage.
We have found it impossible to fit our experimental distribu-
tions without using smaller rate constants when the number
of Xe atoms in the destination cage is six or seven prior to
migration. On the other hand, Pines et al. have done their
two-dimensional experiments at 336 and 357 K as well, and
have reported the free energy differences from their variable
temperature work and also estimates of the activation ener-
gies.

The K matrix for three of the samples that we used are
shown in Table II in order to illustrate the changes of the

phenomenological rate constants with sample and their rela-
tive magnitudes within each sample. We have also examined
the relative contributions of the various terms to each of the
one-off-the-diagonal Kmn (the ones that are composed of
eight terms). In every case, there are at least two, more often
three to four, of the eight terms that are comparable in mag-
nitude. This was true for all four samples, which clearly
demonstrates that none of these Kmn can be considered to be
dominated by a single term. This negates the possibility of
making a simplifying assumption that a single term domi-
nates the one-off-the-diagonal phenomenological rate con-
stants.

In the interpretation of the magnetization transfer experi-
ments, we have considered only a particular fundamental
event, that of a single Xe atom leaving one cage and entering
a second cage. With the Na(II) ions blocking the windows of
the alpha cage it is not necessary to consider two Xe atoms
going through the same window at the same time. If such
were significant one would expect the time evolution curves
involving Kjj 1 2 and Kj i-2 to possess a contribution from a
single exponential. We did not observe any evidence of a
two-atom transfer in a correlated manner. However, a more
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> 15 s z. <n>
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FIG. 9, The results of the simulation of the diffusion of:
zeolite NaA, using tile rate constant matrix given in Tabb

plausible correlated event involving two Xe a
involved in crowded cages: one Xe atom com.
one window of the cage pushes another one ot
site (or other) window. In this case, instead
equal to k84f(7) we should add also k84f(8)
since the "transit" cage preserves its occupancy
have no evidence of this type of correlated tw

F. The diffusion rate of Xe atoms in zeolite

With the elementary rate constant matrix a
provide a good simulation of the magnetizati(
periments and also reproduce the equilibrium (
300 K, we can simulate the self-diffusion of
zeolite NaA, using a similar procedure. For thi:
the coordinates of the cage are considered, not
the Xe atom within the alpha cage. Ten by tei
cages form the simulation box. Periodic bound
are used, that is, if a Xe atom finds itself in
outside of the simulation box, the image of th
figuration of the simulation box is used to prn
occupancy. As before, a uniform distribution '
nary state, 100 equilibration steps are taken in 
atom is allowed a choice of six windows (+.x
+ z, -z) and to attempt a random jump with
according to the value of the microscopic rat,
propriate to the occupancy of the cage in whit
and the cage it is attempting to jump into. T7
distribution arrived at in this simulation is th(
found with the simulation using 5000 cages wit
spatial location. After the equilibration steps,
of the diffusion begins. The zero time coordina
atom is recorded and its mean square distance
coordinates is recorded every five time steps. I
is allowed to proceed for 120 s. Figure 9 sh,
square displacement x 2+ y2+ z2 (averaged o,
3938 up to 6543 Xe atoms, according to the ai
for the sample) for three samples of Xe in zec
diffusion coefficient (the self-diffusivity, D,)
the slope by using Einstein's diffusion equation

/1\ d
D=~' limr - (I r(t) -r(0)i12~

\6~ ,-0dt

>=6.543 i is 0.073 (cage length)2 per second or 0.11 X 10-18 m2/s for
the sample with (n) = 3.938 Xe atoms per cage, 0.092 (cage
length)2 per second or 0.14X 10-18 m2/s for the sample with
(n)=5.80 Xe atoms per cage, and 0.10 (cage length)2 per
second or 0.16X10'1 8 m2/s for the sample with (n)=6.543
Xe atoms per cage. The self-diffusivity at the zero-loading
limit, D,=0.075X 10-18 m2/s was obtained in exactly the
same way as all the others, except that the rate constant kl

100 120 was used in every attempt to jump. Since the mean square
displacement is equal to the number of steps for a random
walk on a simple cubic lattice, and the rate constant is just
the number of steps per unit time, D,=kl6 in units of (cage

Xe in the cages of length)2/s. Using the rate constant kl for the zero-loading
limit, and using the average rate constant for a given (n) is

(k) ='F.'= l5am= lf(m - I) kmn(n)

atoms could be leads to values of D. equal to 0.075, 0.10, 0.13, and
zing in through 0.16x10-' 8 m2/s for (n)=0.0, 3.94, 5.80, and 6.54, respec-
ut of the oppo- tively, which agree with the results of the simulations. The
I of K84 being larger diffusion rate for the higher loading is a reflection of
), for example, the intrinsically higher probability of a single Xe atom mak-
cy number. We ing a jump out of a cage containing Xe,, being higher for
Yo-atom event. larger n. This is in contrast to the self-diffusivity of Xe

monotonically decreasing with increasing concentration in
silicalite, found experimentally' 5 and also predicted by equi-

te NaA librium molecular dynamics simulations.16 It is also in con-

at 300 K which trast to the self-diffusivity of methane monotonically de-
on transfer ex- creasing with increasing concentration in silicate observed
distributions at experimentally and predicted by equilibrium molecular

df Xe atoms in dynamics simulations. 1 '1 9' 20 This is a very slow diffusion
s purpose only rate when compared to those measured for Xe self-diffusion
te position f in the more open zeolites such as NaCaA, NaX, or silicalite,

in which D, is of the order of 10-8 m2 /s.2 1 These diffusion
nby ten alp coefficients are also smaller than those estimated for methane

1ar' conditions in zeolite NaA: D,=10-15 m2/s by adsorption techniques,2 2

an alpha cage or 5X10-16 or 3.8X 10- 5 m2/s,4 estimated from mean cage
ve present con- residence times deduced from measurements of NMR spin

ovide the cage relaxation times (T2 ). The monotonic increase of the self-
is the prelimi- diffusivity with concentration shown in the inset in Fig. 9, is
which each Xe classified by Kaerger and Pfeifer23 as type V behavior, typi-
h'a pX + Ya iY cal of cases in which the critical diameters of the intracrys-
t a probability talline pore system are of the order of the molecular diam-
:e constant ap- 2
:h it finds itself eters, as for propane at 413 K in zeolite NaCaA.2 4

he equilibrium V. CONCLUSIONS
ie same as was
ithout regard to We have determined the rate constants ki,,, for the indi-
the simulation vidual cage-to-cage transfer of a single Xe atom from a cage
ates of each Xe containing a cluster Xe,, to a cage containing a cluster Xem lI
from its initial to form Xe, at 300 K. In general the rate constant for a
The simulation single Xe atom leaving a cage increases with increasing oc-
iows the mean cupancy. These rate constants are nearly independent of the
ver all atoms, occupancy of the recipient cage except in the cases where
verage loading this occupancy is 6, 7, or 8. The rate constants decrease
olite NaA. The dramatically for a Xe atom jumping into a cage containing
obtained from Xe6 , Xe7 , or Xe8 . Since we have observed no Xe9 at all, the
on ratio kgm/kmg must be very small, that is, k9m is very small
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and/or km9 is very large. We find that the rate constant matrix
which reproduces the very large number of experimental
magnetization decay/recovery curves also leads to an equi-
librium distribution of Xe atoms among the cages that is in
very good agreement with experiment for all ten samples.
What remains to be done is the application of transition state
theory to the a priori calculation of the rate constants ob-
tained here.
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