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We compare the ability of six N2–Kr potential energy surfaces to predict experimental interaction
second virial coefficients, diffusion coefficients, mixture viscosity, thermal conductivity, and nuclear
magnetic resonance �NMR� rotational relaxation cross sections. These include a previously
published empirical surface derived from fits to molecular beam experiments and various model
potentials of the Tang and Toennies �TT� type. The TT type potentials differ in the set of dispersion
coefficients employed. Two sets are obtained from published ab initio calculations, another from
combining rules and one from empirical considerations. The repulsive parameters have been
obtained from published results of a charge overlap combining rule. A variation of the TT model
suggested by Aziz is also used to further investigate the effect of the repulsive wall anisotropy on
the rotational relaxation cross sections. Forty-five effective cross sections that determine the bulk
transport and relaxation phenomena have been calculated by classical trajectories for temperatures
ranging from 100 to 800 K. The sensitivity of the NMR-derived cross sections to the various
characteristics of the anisotropy of the potential �such as the anisotropy in the well depth, in the high
repulsive wall, in the low repulsive wall, and at V�0� are examined. The empirical anisotropic
LJ�12,6� surface of Rotzoll provides the best agreement with the diffusion, viscosity, thermal
conductivity, and NMR relaxation experimental results. © 1995 American Institute of Physics.

I. INTRODUCTION

The potential energy surface for atom–diatomic interac-
tions are of current interest. The H2–rare gas potential energy
surfaces have been extensively tested and are now consid-
ered well established.1 These are weakly anisotropic systems
so that essentially separate determinations of the isotropic
and anisotropic parts of the potential can be achieved. The
N2–rare gas systems are much more challenging. Beneventi
and McCourt and co-workers have used close-coupling
methods and classical trajectory �CT� methods to test empiri-
cal surfaces and model surfaces for N2–He and N2–Ne.2,3

They have developed an empirical potential energy surface
�PES� for N2–Ar based on extensive multiproperty fitting.4

In the H2–rare gas5–8 and in N2–Ar systems,4 it has been
established that nuclear spin relaxation data prove to be very
useful in testing and refining the anisotropic part of the po-
tential. In particular the H2–He potential surface has been
refined by making use of the 1H and 2D spin relaxation data
for H2–He, HD–He, and D2–He.5,6 The high sensitivity of
the temperature dependence of the 1H relaxation in the
H2–Ne system enabled a minor adjustment of the anisotropic
part of a PES that had already reproduced rather well many
observables, in order to fit the close-coupled scattering cal-
culations of �T1/��lin

� to the observed data in the H2–Ne
mixtures.7 A recently determined multiproperty PES for
N2–Ar was also refined by using nuclear spin relaxation
times. This PES provides the best overall agreement with all
available gas phase data for N2–Ar mixtures.4 The N2–He,
Ne, and Ar intermolecular interactions can now be consid-

ered well-characterized for predictions of scattering, trans-
port, and relaxation data. We consider next the N2–Kr and
N2–Xe systems.

A model potential that has been proposed for N2–rare
gas systems is that of Kistemaker and de Vries �KdV� which
is based on a sum of two site-to-site Morse functions,9 with
parameters determined from combining rules10 using the
pure gas parameters.11 A set of classical trajectories were run
on such N2–He, –Ne, –Ar, and –Xe surfaces to compare
calculated rotational relaxation times ��rot� with experimental
results.9 The authors report good agreement between the PES
predictions and experiment. On the other hand, in a sequence
of studies on N2–He, N2–Ne, and N2–Ar surfaces, Wong
calculated a number of observables from the KdV surfaces
including interaction second virial coefficients �B12� and ro-
tational relaxation times.12 The ability of the KdV surfaces to
reproduce experimental B12 values decreased in going from
N2–He to N2–Ar and the values for �rot did not agree with
experiment or the original calculated values. Since this latter
CT approach has shown good agreement with the close-
coupling method,13 it was concluded that the KdV surface
does not provide a sufficiently adequate description of the
N2–Ar interactions. The poor quality of the N2–Ar KdV sur-
face is probably due to the use of a simple combining rule
and the neglect of a three body contribution. We could have
used combining rules to construct a N2–Kr surface of the
same form as Kistemaker and de Vries constructed for
N2–He, Ne, Ar, and Xe. However, on the basis of its dimin-
ishing agreement with experiment in the series N2–He, –Ne,
–Ar, we do not consider the KdV potential any further for
N2–Kr.

Another model anisotropic potential for symmetric rigid
rotor �D�h symmetry�-atom systems that has been proposed
by Pack,14 builds the anisotropy into the parameters for thea�Present address: Northwestern University, Evanston, Illinois 60208-3113.
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well depth, �, and its radial position, Rm . Pack has shown
that both anisotropies could be determined from those mo-
lecular beam scattering experiments in which both the rain-
bow region and the diffraction oscillations are precisely de-
termined. In particular, a Lennard-Jones �12,6� with a
Legendre expansion �truncated at the P2�cos 	� term
 in the
well depth and its radial position is a simple form which
could be used. Rotzoll15 reported anisotropic potentials of
this form for the N2–Ar, Kr and O2–Ar, Kr systems in which
the parameters for the anisotropic Lennard-Jones �LJ�12,6�

functions were determined from fits to laboratory angular
distributions obtained from molecular beam experiments.
This appears to be the first anisotropic surface proposed for
the N2–Kr system.

Of the model surfaces that have been used for N2–He,
N2–Ne, and N2–Ar, the Bowers, Tang, and Toennies PES
�Ref. 16� �called BTT� provides remarkably good descrip-
tions of the intermolecular interaction for these pairs. In the
Tang–Toennies model potential, the long range ab initio dis-
persion terms are damped individually using a universal
damping function, and a simple Born–Mayer repulsive term
is added to them.17 When a large number of different experi-
mental quantities are available for multiproperty fitting, a
useful approach is to construct an empirical piecewise PES,
for example a Morse–Morse–spline–van der Waals
�MMSV� form. This approach has been used for N2–Ne, and
N2–Ar.2,4,18 In comparison, the BTT potential for each of
these systems provides an adequate description; although it
does not give as accurate a prediction of some data as the
empirical surface, it does better than the empirical surface in
others. For example it gives better agreement with the rota-
tional relaxation and field effect data, which are properties
sensitive to the anisotropy of the high repulsive wall for
N2–He while giving simultaneous agreement with the scat-
tering data, the second virial coefficient data, the bulk trans-
port data, and the depolarized Rayleigh collision-broadening
data which are properties sensitive to the anisotropy of the
low repulsive wall and the spherical component of the
interaction.3 For N2–Ne the BTT potential gives impressive
agreement with the experimental results over a wide tem-
perature range for mixture transport phenomena and spe-
cially for rotational relaxation and field-effect data.19 For
N2–Ar �Ref. 20� the BTT surface was the best available,
until just recently,4 reproducing transport properties such as
diffusion and shear viscosity to within �1% over the tem-
perature range 120–1000 K and the thermal conductivity at
room temperature. However, the properties which are highly
sensitive to the anisotropy of the interaction, such as relax-
ation and field effect phenomena, are less well predicted. The
most recent empirical surface that gives the best overall de-
scription of the N2–Ar interaction4 and the BTT surface have
similar isotropic parts while the anisotropy in the empirical
surface is not as strong as in the BTT version.

For the next member of the series, the N2–Kr pair, there
are not as many accurately measured observables as would
be needed to construct a multiproperty potential. Neverthe-
less, there are second virial coefficients from 148 to 323 K
by Brewer,21 laboratory angular distributions from molecular
beam scattering experiments,22 diffusion coefficients,23,24

mixture viscosity,25 thermal conductivity,26 and temperature-
dependent NMR relaxation cross sections of two types ��J

and �	,2� from our laboratory.27,28 In T1 studies of mixtures
of N2 with other gases we have discovered a very interesting
experimental trend: the ratio �	,2/�J for N2 molecule is very
nearly independent of the collision partner and is close to
2.1. These collision partners include a wide variety of mo-
lecular types, Ar, Kr, Xe, CO, N2, HCl, CO2, CH4, CF4,
SF6. In addition we have discovered some trends in the �J

values that have been measured in our laboratory for a large
number of probe molecules and these ten collision partners.29

These two cross sections are known to be extremely sensitive
to the anisotropy of the potential energy surface. Spin relax-
ation phenomena depend entirely on the anisotropy of the
PES of the interaction between the colliding pair of mol-
ecules, as was recognized very early on by Bloom and
others30 and by Gordon.31 From the work of McCourt and
co-workers4 we know that a multiproperty fitted PES can
reproduce our measured �J(T) and �	,2(T) for the N2–Ar
system. Therefore, in our quest to understand the near-
independence of the �	,2/�J ratio with respect to the collision
partner and the general empirical trends in the �J , we have
some hope of a quantitative understanding of the trends in
N2–Ar, Kr, Xe. Toward this end, we begin with classical
trajectory studies of the N2–Kr system.

We considered the currently available potential function
for N2–Kr in the literature by Rotzoll15 and we also con-
structed new potentials using the TT model. In their study of
N2–noble gas atom interactions, Bowers, Tang, and Toennies
�BTT� �Ref. 16� use the Tang–Toennies �TT� model17 to con-
struct anisotropic surfaces for the N2–He, –Ne, and –Ar
systems. In the TT model, the PES is expanded in a Legendre
series with each of the Vn(R) a linear combination of cuts of
the surface at various values for 	, where 	 is the angle
between the axis of the linear rotor and the line of centers. A
Born–Mayer repulsive term and a damped dispersion series
are used in each cut and ab initio values are used for the
Born–Mayer parameters A�	�, b�	�, and also for the disper-
sion coefficients. Bowers et al. noted that for each of the
interactions, plots of the cuts at 	�0° and 	�90° reduce to
similar curves. The authors suggested that these reduced
curves could be used to construct anisotropic N2–Kr and
N2–Xe surfaces. We instead use the Born–Mayer parameters
for the N2–heavy noble gas systems that have been reported
by Nyeland and Toennies.32 A and b values for the parallel
�	�0°� and perpendicular �	�90°� configurations were de-
rived from charge-overlap integrals using a site-to-site de-
scription of the charge distribution. In combination with val-
ues for the dispersion coefficients, potential energy surfaces
for the N2–Kr and N2–Xe systems can be constructed. This
is the approach that we adopt. The success of the simple BTT
model potential in describing the isotropic component of the
PES in N2–He, Ne, Ar provides some encouragement that
the BTT recipe could be used for constructing model poten-
tials for N2–Kr and N2–Xe. We consider only the N2–Kr
anisotropic potential surfaces in this paper.

In this paper we report classical trajectory calculations
on the N2–Kr system using several model potentials, and we
compare their ability to predict our experimental NMR re-
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laxation data and also other experiments such as second
virial coefficients, diffusion coefficients, and mixture viscos-
ity. We find that the anisotropic Lennard-Jones potential of
Rotzoll does surprisingly well in providing good overall
agreement with these properties and with �J(T) and �	(T)
cross sections obtained from NMR spin relaxation measure-
ments.

II. THE N2–Kr POTENTIAL SURFACES

We use the previously published anisotropic N2–Kr PES
by Rotzoll and construct several model anisotropic surfaces
of the TT type. The Rotzoll �GR� functional form follows the
basic Lennard-Jones �12,6� function with the anisotropy
written in the well depth and radial position

V�R ,	����	���Rm�	�/R

12�2�Rm�	�/R


6


with

��	�� �̄�1�aP2�cos 	�


and

Rm�	��R̄m�1�bP2�cos 	�
 .

The values of the parameters determined by Rotzoll are

�̄�2.25�10�14 erg a��0.25

Rm�4.00 Å b�0.09.

We have assembled new anisotropic N2–Kr surfaces us-
ing the Tang–Toennies model as had been done for the
N2–He, Ne, and Ar systems.16 The general TT surface for a
linear molecule–atom system is written as a Legendre ex-
pansion in cos 	, V(R ,	)��nVn(R)Pn�cos 	�.17 Due to the
symmetry of the N2–rare gas atom systems, the odd terms
are eliminated and only the zero and even order Legendre
polynomials contribute. Retaining the first two terms one ob-
tains

V�R ,	��V0�R ��V2�R �P2�cos 	�.

In this paper, the radial contributions are determined from
linear combinations of cuts of the surface at 	�0° and 90°,

V0�R ���V�R ,0° ��2V�R ,90° �
/3,

V2�R ��2�V�R ,0° ��V�R ,90° �
/3.

Following the TT recipe, each V(R ,	) is written as a com-
bination of a Born–Mayer repulsive term, a damping func-
tion and a dispersion coefficient series,

V�R ,	��A�	�exp��b�	�R
��
n�3

nmax � 1��
k�0

2n
�b�	�R
k

k!

�exp��b�	�R
� C2n�	�

R2n ,

where

C2n�	��C2n�1��2n
�2 �P2�cos 	���2n

�4 �P4�cos 	��•••
 .

The estimates of the Born–Mayer parameters for the
N2–heavy noble gas systems have been reported by Nyeland

and Toennies32 and are listed in Table I. In this site–site
approximation,32 the repulsive part of the potential is deter-
mined from charge density overlaps of the site-to-site charge
distributions separately for the parallel and perpendicular ge-
ometries. This potential is then fitted to the Born–Mayer
potential form

V ��A � exp��b �R ��, V��A� exp��b�R��.

Nyeland and Toennies found that potentials VAB are related
to the overlap integrals of the undisturbed electron density
distributions of atoms A and B by

VAB�KAB�S��A�B�/R
2
�AB,

where the parameters KAB and �AB may be obtained by geo-
metric and arithmetic combining rules respectively when
A�B . They obtained A and b parameters for parallel and
perpendicular arrangements of the N2 molecule and a rare
gas atom.32 The advantage of this model is that the method
can easily be extended to intermolecular potentials between
two molecules of any number or arrangement of atoms. On
the other hand, they estimate that errors of roughly 10% in
the Born–Mayer parameters may be expected from the use
of the combining rules. We can see this in the comparison of
the values for the lighter rare gas atoms with the values for
the N2–He, Ne, and Ar systems from the Bowers et al.
paper.16 We note that the Nyeland–Toennies estimates of A
and b are systematically larger than the BTT values for these
systems. Nevertheless, we adopt the Nyeland–Toennies
Born–Mayer parameters for the N2–Kr system.

In this paper three approaches have been used to deter-
mine the dispersion contribution. The anisotropic dispersion
series is given by �even order terms only for the system
under study here�

C2n�	��C2n
�0 ��C2n

�2 �P2�cos 	��•••

�C2n
�2n�4 �P2n�4�cos 	�,

where C2n�	� is the dispersion coefficient that corresponds to
a term, in the multipole expansion of the interaction energy,
of the form �C2n/R2n. The first approach �to construct the
BNT8 N2–Kr surface� uses the C2n

(k) values determined by
Bowers and Tang33 from combining rules, as was done for
the N2–He, Ne, and Ar systems. Values for the dispersion

TABLE I. Comparison of Born–Mayer parameters.

00

BTTa NTb
90°

BTTa NTb

N2–He A 455.1 639 62.84 63.1
b 2.119 2.23 2.082 2.13

N2–Ne A 1450 1650 135.0 174
b 2.175 2.23 2.080 2.15

N2–Ar A 1211 1870 250 354
b 1.87 1.96 1.88 1.96

N2–Kr A ••• 2890 ••• 547
b ••• 1.95 ••• 1.94

N2–Xe A ••• 1690 ••• 399
b ••• 1.77 ••• 1.77

aBowers, Tang, and Toennies, Ref. 16.
bNyeland and Toennies, Ref. 32.
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coefficients are given in Ref. 33 up to C10
�6� . For n�6 and 8,

we determined the C2n�	� from the combining rule �see for
example Ref. 16�,

C2n�	���C2n�2�	�

C2n�4�	�
�3

C2n�6�	�.

A value of 8 for nmax is used in the radial dependence for the
two cuts of the surface at 	�0° and 	�90°.

In the second approach �to construct the TNTA and
TNTB surfaces� we use the set of Born–Mayer parameters
from Nyeland and Toennies32 and sets of ab initio dispersion
coefficients calculated by Thakkar and co-workers at two
levels of theory.34,35 The first set of Thakkar dispersion co-
efficients �used to construct the TNTA surface� had been de-
termined from dynamic polarizabilities calculated using
many-body perturbation theory �MBPT� for Kr and Xe and
those for N2 by Rijks and Wormer36 using MBPT as well.
More recently, Thakkar and co-workers have reported a new
set of dispersion coefficients based on the same calculations
for Kr and Xe but new results for N2 at three intramolecular
distances.35 The TNTB surface uses these new results �with
N2 at its equilibrium distance�. In addition, the empirical
values of C6

�0� and C6
�2� obtained from moments of the dipole

oscillator strength distribution �DOSD� by Meath and
Kumar37 were used �as recommended by the authors35�. For
the TNT surfaces, the dispersion was represented by the co-
efficients as published, and no additional terms were calcu-
lated. A further variation using Thakkar’s dispersion coeffi-
cients was considered. From the work of McCourt and co-
workers on the N2–Ar system,4 it had been observed that the
repulsive parts of the cuts of the surface at 	�0° and 	�90°
should be parallel in order to better reproduce rotational re-
laxation cross sections. Thus, a modified surface, TNTM, has
been constructed, in which the radial dependence of the re-
pulsive wall at 90° has been shifted and added to the attrac-

tive part of the 0° cut of the TNTA surface. These points
were then fit to a TT type model potential where the Born–
Mayer parameter b is replaced by �R��R2��R ,3,38

V�R ,	�0° ��A�0° �exp����R��R2��R3�


��
n�3

nmax � 1��
k�0

2n
��R��R2��R3
k

k!

�exp����R��R2��R3�
� C2n�0° �

R2n .

To be consistent with the number of terms included in the
dispersion series, nmax in the damping function is restricted
to a value of 5 for all three of the TNT surfaces.

FIG. 1. Parallel �	�0°� and perpendicular �	�90°� cuts of the N2–Kr po-
tential energy surfaces, �a� the repulsive walls and �b� the attractive bowls.

TABLE II. Dispersion coefficients used in the N2–Kr surfaces.a

BNT8b TNTAc TNTBe MNTf

C6
�0� 100.2 100.67 97.28d 108.728

C6
�2� 12.06 13.23 10.57d 13.015

C8
�0� 3 037 3 224.5 3 138.8 3 156.583

C8
�2� 2 082.8 2 055.3 2 013.8 1 809.669

C8
�4� �68.03 �62.50 �59.43 •••

C10
�0� 99 894 112 510 112 990 112 261.054

C10
�2� 95 208.97 100 203 99 567.6 88 315.77

C10
�4� 12 706.52 9 260.0 10 190 •••

C10
�6� �710.246 �451.36 �623.65 •••

C12
�0� 3 565 755.468 ••• ••• 5 028 409.58

C12
�2� 1 151 962.128 ••• ••• 4 022 727.664

aAll numbers are in atomic units.
bFrom Ref. 33. The values of C12

�0� and C12
�2� for the Bowers and Tang set have

been calculated using the combining rule.
cFrom Ref. 34. The TNTM surface uses the same dispersion coefficients as
the TNTA with the following values for the repulsive parameters for the 00

orientation ��1.3687, ��0.11 845, and ��0.006 634. These were
switched back to the original Born–Mayer A and b parameters at
R�4.814 65 Å.

dThe values of C6
�0� and C6

�2� are empirical values from Meath and Kumar
�Ref. 37�.

eFrom Ref. 35, N2 bond length�1.094 Å.
fFrom Ref. 39.
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The third approach �used to construct the MNT surface�
uses estimates of the dispersion coefficients from McCourt.39

These were determined by extrapolating plots of C6 and C8
vs the polarizability of the noble gas atom to the polarizabil-
ity of Kr. The C6

�2� and C8
�2� coefficients were obtained from

plots of C2n
(0)/C2n

(2), and for C10 and C12 the combining rules
were used. The MNT surface contains only P0 and P2 terms,
and thus the C2n�	� series is truncated at the C2n

(2)P2�cos 	�
term and nmax in the damping function is restricted to a value
of 6.

Table II lists the various sets of dispersion coefficients
used in these four new anisotropic N2–Kr potential energy
surfaces. Cuts of the potential energy surfaces are shown in
Fig. 1. The points of interest on each of the surfaces are the
energy minima at the perpendicular �	�90°� and parallel �	
�0°� configurations of the N2–Kr dimer and the values of �,
�where R�� corresponds to V�0� for these configurations.
The anisotropies are expressed as the difference between a
characteristic of the 	�0° and 	�90° cuts,

�����	�0° ����	�90° �,

�Rm�Rm�	�0° ��Rm�	�90° �,

�����	�0° ����	�90° �,

and

�RV�RV�	�0° ��RV�	�90° �,

where �RV�	� is the radial distance corresponding to a po-
tential energy of V at a particular angle 	. A summary of the
potential characteristics for these N2–Kr potentials is listed
in Table III. Following Ref. 4, we characterize the anisotropy
of the PES not only with the values of Rm , �, and crossing
point � at the two extremes �	�0° and 	�90°�, but also
include the values of the differences in position of the repul-
sive wall of the PES at the two extreme geometries for two
energies V�1000 and 5000 cm�1 to provide an indication of
the anisotropy for R��.

The BNT8 and MNT potentials have an isotropic com-
ponent that is deeper and located further inward relative to
the isotropic component of the other potentials. The model

potentials of the TT type that we constructed all have a larger
anisotropy in the location of the potential minimum than the
Rotzoll �GR� potential. They are more anisotropic in the re-
gion where the potential vanishes, as well as high up in the
repulsive wall, compared to the Rotzoll potential. The anisot-
ropy in the well depth is least for TNTM and largest for
BNT8 and MNT. The Rotzoll well depth anisotropy is com-
parable to that of TNTA and TNTM.

III. CALCULATIONS OF THE COLLISION CROSS
SECTIONS

McCourt and co-workers provide a detailed derivation of
the collision cross sections related to the transport and relax-
ation properties which are used in testing nonreactive poten-
tial surfaces.40,41 From the Boltzman equation, the
Chapman–Enskog procedure42 can be used to obtain classi-
cal definitions of the kinetic theory cross sections �see also
Refs. 43 and 44�. The nomenclature used to label the colli-
sion cross sections specifies the nature of the collisional pro-
cess which contributes to the phenomenon. In general, a col-
lision or effective cross section is given by

S� p q s t � k

p� q� s� t� � k�
	

kk�

.

The indices p , q , s , t represent the precollisional �primed�
and postcollisional �unprimed� tensorial ranks or powers of
the microscopic polarizations which are coupled. p denotes
the p-fold tensor product of the reduced peculiar velocity
W�(m/2kT)1/2v, q denotes the tensorial rank in the molecu-
lar angular momentum j. The s and t indices denote the
scalar dependencies of the cross section on the translational
and reduced rotational energy. The various k’s label which
collision partner the polarizations belong to; k , k�, k��A or
B . When the pre- and postcollisional values are identical and
changes in only one partner are relevant, the cross section
can be abbreviated, S(pqst�k)kk�. For the unlike interac-
tions of N2 and Kr, A�N2 and B�Kr.

The temperature-dependent cross sections were calcu-
lated for each PES from fully classical trajectories using the

TABLE III. Characteristics of the N2–Kr surfaces.a

GR TNTA TNTB TNTM BNT8 MNT

��90°� 127.44 138.18 138.13 138.18 181.48 189.31
Rm�90°� 3.82 3.74 3.73 3.74 3.61 3.62
��90°� 3.40 3.34 3.33 3.34 3.22 3.23
��0°� 84.96 97.49 88.54 99.04 119.54 117.52
Rm�0°� 4.36 4.31 4.34 4.30 4.21 4.23
��0°� 3.88 3.90 3.93 3.91 3.81 3.83
�� 42.48 40.69 49.59 39.14 61.94 71.79
�Rm 0.54 0.57 0.61 0.56 0.60 0.61
�� 0.48 0.56 0.60 0.57 0.59 0.60
�R1000 0.35 0.49 0.51 0.52 0.50 0.51
�R5000 0.30 0.46 0.48 0.52 0.48 0.48
V0(R) parameters
� 106.70 101.01 95.00 101.03 125.09 128.28
Rm 4.04 4.08 4.10 4.09 3.98 3.99
�0 3.60 3.67 3.70 3.70 3.58 3.59

aEnergies are in cm�1 and distance are in Å.
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code developed by Dickinson and Lee45 without any modi-
fications. In a study of the N2–He system,13 the same code
gave results similar to those of the close-coupling method.
The agreement increases with temperature, as more rota-
tional states of N2 are occupied. The classical approach and
the Dickinson–Lee code are expected to provide accurate
results for the N2–Kr and N2–Xe systems. Wong has de-
scribed this code in detail,12 and the following is a brief
summary of the method. Where mentioned, energy ranges,
number of quadrature points, etc. apply to the N2–Kr case.

The set of variables used as initial conditions are dic-
tated by the coordinates used to write Hamilton’s equations
of motion and the fewer the equations of motion, the more
economical it is to run the code. In Cartesian coordinates,
twelve variables are needed to uniquely describe a diatom–
atom system. The rigid rotor approximation and action angle
coordinates can be used to reduce this set. Miller defines the
action angle coordinates in terms of Cartesian coordinates
and writes the classical Hamiltonian in the center-of-mass
frame as46

H�P ,l , j ;R ,ql ,q j���P
2�l2/R2�/2��B j2�V�R ,cos 	�,

where P is the center-of-mass momentum, R is the separa-
tion of centers of mass of the colliding species, and � is the
reduced mass. The orbital angular momentum l is defined as
the angular momentum of the atom about the center of mass
of the rotor. The rotational energy of the rotor is given by the
rotational constant B and angular momentum j. The potential
energy function V�R ,cos 	� is written in terms of R and the
cosine of the angle 	 between the rotor axis and the line of
centers. The angular dependence of the PES can be written in
terms of the action angle coordinates as follows:

cos 	��cos ql cos q j��� l
2� j2�J2�/2l j 
sin ql sin q j ,

where the total angular momentum is J. The coordinates ql

and q j are the angles conjugate to l and j, respectively.
The total energy is selected first from a set of values

determined from a Clenshaw–Curtis quadrature in three
ranges as described by Dickinson and Lee47 �see also Ref.
48�. In general, the middle range covers energies of about
one to ten times the well depth of the PES.49 The lower and
higher ranges are extended far enough to incorporate the
proper Boltzmann distributions for the temperatures desired.
For the systems studied, the energy mesh used follows the
extensive work of Wong and McCourt �see for example Ref.
12�. The high energy range is composed of five energies
from 30 000 to 2 500 cm�1, nine points are used between
2500 and 150 cm�1 and three points cover the low energy
range down to 40 cm�1.

The initial rotational energy Er and the initial transla-
tional �kinetic� energy Ek are partitioned from the total en-
ergy E tot using

���Er�Ek�/E tot .

A 12-point Gaussian quadrature is used for � with the most
positive value neglected, since the extremely low kinetic en-
ergy would make for an expensive trajectory to calculate.
Wong found these eleven points to adequately describe the

rotational states of N2 and CO2 in his work on the N2–light
noble gas atom12,50 and CO2–He �Ref. 51� systems �and also
for O2 in He and Ne �Ref. 52�
.

At each E tot and �, the initial relative orientation of the
rotor and atom is described by the values of ql , q j and the
angle � between j and l. The conjugate angles ql and q j are
selected from an 8 to 12 point trapezoidal rule and an 8 to 12
point quadrature is used for �. The impact parameter b can
be defined as the distance of closest approach if there were
no intermolecular forces and is specified in quadratures over
two ranges. These ranges are divided by the rainbow value of
the impact parameter br where a maximum is observed in the
scattering angle as a function of b . For b in�br , an 8 to 12
point quadrature is used. For bout�br , an 8 to 12 point
quadrature is also used but the points are selected so that the
maximum impact parameter bmax corresponds to a scattering
angle of roughly one degree. Initial runs over a range of b
were made with two points in each of the orientation vari-
ables to find br at each set of E tot and �.

Once a proper value for br is chosen and the range of
bout selected, the optimum number of values in the orienta-
tion variable set is picked. Initially, a control set of trajecto-
ries at a high E tot and low � �high translation energy� was
run with a reliable set of impact parameters and 12 points in
each of the orientation angles. Then the number of points is
reduced until a minimum set of ql , q j , and � are found
which best reproduces the set of partially averaged cross sec-
tions from the control. This minimum set was then used for
all b , �, and E tot .

This method for testing for convergence was accompa-
nied by comparing energy dependent cross sections which
are related by time reversal symmetry �TRS�. TRS cross sec-
tions are related by their similar dependence on the initial
and final velocities and angular momenta. For example, the
following energy-dependent production cross sections are re-
lated by whether the dependence is on the initial velocity v�
and final angular momentum j or on v and j�,

S� 0 2 0 0
2 0 0 0 	

E

�
 �P2�v�–j��Ed�

and

S� 2 0 0 0
0 2 0 0 	

E

�
 �P2�v–j���Ed� ,

where d� is the integration element for the averages over �
and b . The integrand represents the functional description of
the collision process averaged over ql , q j , and � and can be
referred to as an opacity function. Although these are energy-
dependent functions, a similar nomenclature to that for tem-
perature dependent cross sections is used to illustrate the
pertinent polarizations. The inverted order of the indices
identifies TRS cross sections. Additional comparisons can be
made between two cross sections that depend on the same
collisional process but involve different functional forms.
These cross sections differ in the explicit form of the opaci-
ties used. The viscosity cross section S� is calculated with
two functionally different opacity functions and are also used
to test for convergence.
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All surfaces were used for trajectory calculations �no
surface was reported by Kistemaker and de Vries for the
N2–Kr system� even though only the TNTA surface is in
excellent agreement with the B12 data. This will permit a
further comparison of the various methods used to create the
full surfaces. For example, the effects of different attractive
contributions to the various TT surfaces can be examined.

We considered carefully the selection of an optimum set
of ql , q j , and � and found that 8 points in each of ql , q j ,
and � were sufficient. This is in contrast to our study of
CO2–Ar surfaces,53 in which we had to increase the number
of points used in each of the orientation angles to 12 points
in order to reduce the error in the TRS and opacity-related
cross sections. On the order of 2 million trajectories were
used for each of the N2–Kr surfaces. All calculations were
done on IBM RISC/6000 model 560 and model 365 work-
stations.

IV. RESULTS

Usually, a proposed surface must first predict experimen-
tal interaction second virial coefficient data before consider-
ation in a trajectory study since virial coefficient calculations
are inexpensive. Our interests are in finding a reliable N2–Kr
surface and understanding the relation between the PES and
the gas phase NMR relaxation experiments conducted in our
laboratory. Thus, we report the results of all six surfaces
regardless of their abilities in predicting virial coefficients. In
particular, calculated values for interaction second virial co-
efficients, diffusion coefficients, mixture viscosity, thermal
conductivity, and two NMR cross sections are presented for
each surface. In addition to the quantities described below,
45 different cross sections were calculated at 100–800 K,
including production cross sections for each of the six
N2–Kr surfaces. Values for the cross sections not mentioned
here can be obtained from the authors and Ref. 54.

A. Interaction second virial coefficient, B12

From the virial expansion �in inverse powers of the mo-
lar volume� of the equation of state,

PV̄

RT
�1�

B�T �

V̄
�

C�T �

V̄2
�•••

the temperature-dependent functions B(T), C(T),... are re-
ferred to as the second, third,... virial coefficients. For a bi-
nary mixture, the experimental second virial coefficient Bmix
is given by

Bmix�x1B11�2x1x2B12�x22B22 ,

where the quantities with subscripts 11 and 22 are the second
virial coefficients for the pure gases and B12 is the interaction
second virial coefficient for the unlike interaction. In general,
the interaction second virial coefficient can be calculated by
integrating the PES over relative orientations, and for a lin-
ear molecule atom system, the following is used �see for
example, Ref. 55�,

B12�T ��B12
class�T ��N0�


0

�

dR R2

�1

1

d cos 	

�� 1�exp��V�R ,cos 	�

kT � � ,

where R is the center of mass separation, 	 is the angle
between the rotor molecular axis and the line of centers, and
V�R ,cos 	� is the interaction potential energy surface. The
first translational and rotational quantum corrections can also
be included. These add integrals over the PES to the classical
B12 values so that

B12�T ��B12
class�T ��B12

trans�T ��B12
rot�T �

and have been used for calculations of B12 . These correc-
tions are given by55,56

B12
trans�

N0��
2

24��kT �3 
0

�

dR R2

�1

1

d cos 	

�� exp��V�R ,cos 	�

kT � � ��V�R ,cos 	�

�R �2

and

B12
rot�

N0�

24�kT �3 
0

�

dR R2

�1

1

d cos 	

�� exp��V�R ,cos 	�

kT � � � �2

�R2 �
�2

l I
	

���
L�0

�

L�L�1 �VL�R �PL�cos 	�� ,

where VL(R) are the radial coefficients of the Legendre ex-
pansion of V�R ,cos 	� in terms of cos 	,

V�R ,cos 	���
L

VL�R �PL�cos 	�

and l I is the rotor’s rotational moment of inertia. Due to the
angle-averaged nature of the virial coefficient and its inde-
pendence of j, it is primarily sensitive to the isotropic part of
the PES.

Figure 2 and Table IV show the results of the calculation
of B12 including the rotational and translational quantum cor-
rections, as a function of temperature for each of the N2–Kr
surfaces. The TNTA surface provides the best agreement
with Brewer’s experiments.21 The various TNT surfaces pro-
duce B12 values which slightly overestimate the experimental
values. The other surfaces underestimate the experiment and
fall outside of the error bars of the experiment ��1
cm3/mol�.21 These values of B12 reflect the deeper wells of
the MNT and BNT8 surfaces. The poor results from the GR
surface may be due to its LJ�12,6� form. One could adjust the
angle-averaged parameters, �̄ and R̄m , so that agreement is
obtained. However, since the anisotropy had been adjusted to
reproduce the molecular beam experiments, attempts at ad-
justing a and b have to be done in such a way as to retain the
good agreement with the scattering experiments.
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B. Diffusion coefficients

Within the first order Chapman–Cowling approxima-
tion42 of a binary mixture, the binary diffusion coefficient is
given by40

DAB�kT/�mA�AL0v̄S�1000�A �AB
 ,

where Boltzmann’s constant is given by k , v̄ is the mean
relative speed, �8kT/���1/2, where � is the reduced mass of
the pair, L0 is Loschmidt’s number �2.686 763�1025

molecules m�3� and �A is the density of species A in amagat.
The notation used in the diffusion cross section,
S(1000�A)AB is an extension of the notation described
above where now A�N2 and B�Kr. This cross section is not
very sensitive to the anisotropic part of the PES, since it has
only a small contribution from inelastic collisions. Using the
classical trajectory results for the diffusion cross sections, the
diffusion coefficient has been calculated for each of the sur-
faces.

There are two sets of experimental diffusion data in the
literature. The experimental values for the diffusion coeffi-
cient of Trengove and Dunlop23 were obtained as a function
of temperature and mole fraction of Kr, xKr , and the values
of DAB were obtained from extrapolation to xKr�0. These
values were then fit to a second order polynomial in
temperature23 and the values calculated from the fit are
shown in Fig. 3. The values reported by Wahby24 were not
extrapolated to xKr�0 and thus contain a small contribution
from a finite value of xKr �the ‘‘almost Lorentzian’’ results�.
They were also fit to a polynomial in temperature, however,
we used the actual values reported in the original paper.24

The small differences between the two experimental data sets
are not significant since the various surfaces predict similar
values of DAB . The calculated values are compared with
experimental results in Fig. 3. The predictions from the
TNTA surface agree best with the data of Trengove and Dun-
lop, while the MNT, GR, BNT8, and TNTB surfaces repro-

FIG. 2. Temperature dependence of the interaction second virial coefficient
in N2–Kr. The experimental error is �0.1 cm3 mol�1 as reported by Brewer
�Ref. 21�.

TABLE IV. Comparison of calculated and experimental values for the interaction second virial coefficient.

T/K GR TNTA TNTB TNTM MNT BNT8 Experimenta

148.15 �168.17 �122.06 �112.12 �119.89 �183.74 �169.58 �119.58
173.15 �128.04 �89.804 �81.910 �87.882 �136.72 �126.00 �89.14
198.15 �100.44 �67.681 �61.126 �65.918 �105.45 �96.897 �67.92
223.15 �80.339 �51.607 �45.994 �49.953 �83.223 �76.144 �52.68
273.15 �53.099 �29.898 �25.516 �28.382 �53.829 �48.618 �30.71
323.15 �35.570 �15.992 �12.380 �14.559 �35.353 �31.272 �17.08

aReference 21.

FIG. 3. Comparison of calculated and experimental diffusion coefficients
for N2–Kr. The data from Trengove and Dunlop have been calculated from
the reported quadratic temperature dependence in increments of 5 K and
have an uncertainty of less than 0.1% �Ref. 23�. Wahby reports an uncer-
tainty of about �1.5% �Ref. 24�.
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duce this data and those of Wahby. The TNTM results are too
low. We note that the diffusion coefficient alone is not a
sufficient test of an anisotropic PES.

C. Mixture viscosity

The first order Chapman–Cowling approximation ex-
presses the mixture viscosity, �mix , as40,57�a�

�mix�
kT

v̄�AB
� xA

2 S�2000�B �AB

�xAxB�&yAS�2000�B �BB�2S� 2000�A
2000�B 	

AB

�&yBS�2000�A �AA��xB
2 S�2000�A �AB�

where

�AB���2yBxAS�2000�A �AA�xBS�2000�A �AB


��xAS�2000�B �AB��2xBvAS�2000�B �BB


�xAxB�S� 2000�A
2000�B 	

AB
� 2

and xA and xB are the mole fractions for species A and B .
These cross sections, given in the standard notation, clearly
do not involve angular momentum changes and are not ex-
pected to be noticeably sensitive to the anisotropy of the
potential surface. The y� factors are functions of the masses,
y���m�/M tot�

1/2.
Experimental values of � for pure Kr and N2 have been

used. This forces agreement between theory and experiment
for xN2

� 0 and 1. Thus it is only the values of �mix as a
function of xN2

that are important in the comparison. Figure
4 shows the results at three temperatures. Experimentally, the
�mix values deviate from a linear dependence on xN2

, with
larger values �than a linear dependence� for xN2

in the
midrange. All but one of the surfaces reproduce the general
dependence on the N2 mole fraction at all five temperatures.
The TNTM surface fails to produce values within the experi-
mental error.

D. Thermal conductivity

In contrast to diffusion and viscosity, the thermal con-
ductivity has a contribution from the molecular angular mo-
mentum of the rotor. McCourt and Liu have discussed the
first order Chapman–Cowling expression for the thermal

conductivity coefficient, �iso .57�b� Within this approximation,
the thermal conductivity coefficient depends on the follow-
ing cross sections:

S�1001�A �AB S�1010�A �AB

S� 1 0 0 1 �A
1 0 1 0 �A 	

AB

S� 1 0 1 0 �A
1 0 1 0 �B 	

AB

S� 1 0 0 1 �A
1 0 1 0 �B 	

AB

S�1010�B �AB .

The cross sections in the first column depend on the rota-
tional state of N2 in N2–Kr mixtures, for example. The pure
noble gas cross section S(1000�B)BB and the pure gas
cross sections for the linear rotor S(1000�A)AA ,

FIG. 4. Temperature and mole fraction dependence of the mixture viscosity
in N2–Kr. Predictions from the �a� TNTA, TNTB, TNTM and �b� BNT8,
MNT, GR surfaces are compared with the experimental data of Hellemans
et al. �standard deviation of 0.33%� �Ref. 25�.
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S(0001�A)AA , and S(0010�A
0001�A)AA are also needed. Like the

mixture viscosity, the calculation of the mole fraction depen-
dence for �iso is fixed by the pure gas cross sections in the
limit of the pure gases.

Calculated values of �iso as a function of the N2 mole
fraction are compared with the experimental data of Fleeter
et al.26 in Fig. 5. All but the MNT and TNTM surfaces pre-
dict the experimental points, with the GR, BNT8, and TNTB
surfaces giving nearly identical values.

E. NMR cross sections

Measurements of the spin-lattice relaxation time, T1 ,
from nuclear magnetic resonance �NMR� experiments pro-
vide two independent cross sections which are associated
with the collisional effects on the molecular rotational angu-
lar momentum, j. When the relaxation of a quadrupolar
nucleus is dominated by the coupling between the nuclear
electric quadrupole moment and the molecular electric field
gradient at the nucleus, the observed T1 is related to the
effective cross section S�(02̂00�A�AB by58

T1�
160I2�2I�1 �

3�2I�3 � � �

eqQ 	 2

� v̄S��02̂00�A �AB ,

where I is the nuclear spin quantum number, eqQ/� is the
nuclear quadrupole coupling constant, � is the number den-
sity of the collision partner, and v̄ is the mean relative speed.
The electronic coupling affects the populations of the nuclear
magnetic spin states since the magnetic moment is directed
along the axis of the nuclear electric charge distribution. Us-

ing a classical treatment, Gordon has shown this cross sec-
tion to depend only on the reorientation of the molecular
angular momentum58

S��02̂00�A �AB��3/2 �
 �sin2 	 j� i2�b db ,

where 	j is the angle between the angular momentum before
and after a collision. The brackets imply an average over the
internal states of the molecules. The capped integer in the
symbol for the cross section denotes the use of normalized
angular momentum. That is, the cross section can be written
as

S��02̂00�A �AB��3/2 �
 �1��J�–J/�J�J �
2� i2�b db .

This relation was arrived at from a classical treatment of an
autocorrelation function of a unit vector u fixed to the rotat-
ing molecule which gave the following equality:58



0

�

�P2�u�0 �•u� t �
�dt��1/4 ��� v̄S��02̂00�A �AB

�1.

The same cross section can be obtained from dipole–dipole
dominated relaxation or when the relaxation is dominated by
chemical shift anisotropy.

In depolarized Rayleigh light scattering, the scattered
light is coupled to the rotation of the molecule by the polar-
izability tensor and collisional changes in the angular mo-
mentum affect the resultant spectrum. The Fourier transform
of the autocorrelation function, C(t), for the traceless part of
the transition polarizability tensor is directly related to the
normalized band shape59

I�����1/2��
 C� t �exp��i�t �dt ,

where59

C� t ��
�Tr ��0 �•�� t ��
�Tr ��0 �•��0 ��

,

where � is the traceless part of the transition polarizability
matrix. In general, the cross section derived from the colli-
sional line broadening of the depolarized Rayleigh line is

S�02̂00�A �AB�4I�0 �/� v̄c

band

I���d� ,

where I�0� corresponds to the � j�0 part of the spectrum.
When the probe molecule is linear, the correlation function
can be related to a vector u rigidly attached to the
molecule,59

C� t ��
�Tr ��0 �•�� t ��
�Tr ��0 �•��0 ��

��P2�u�0 �•u� t �
� .

When the collision partner is a molecule, its own angular
momentum contributes to the correlation function and the
relevant cross section S(02̂00�A�AB is defined as

S�02̂00�A �AB�S��02̂00�A �AB�S��02̂00�A �AB

and

FIG. 5. Mole fraction dependence of the thermal conductivity coefficient
from the N2–Kr potentials and the experimental data of Fleeter et al.
��0.3% accuracy� �Ref. 26� at 300.65 K.
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S��02̂00�A �AB��3/2 �
 � �J–Jp�
2

�JJp�
2 �
�J–Jp��

2

�JJp��
2 �

i

2�b db ,

where � �i stands for an average over the internal states of the
molecule. In a linear molecule–atom system the spherical
collision partner does not directly contribute so that

S�02̂00�A �AB�S��02̂00�A �AB .

Therefore, in this case,

S��02̂00�A �AB�S�02̂���	 ,2�SDPR .

That is, the same cross section that describes the collisional
contribution to the quadrupolar, dipole–dipole and chemical
shift anisotropy mechanisms in NMR spin relaxation can
also be obtained from depolarized Rayleigh experiments.

Note that when the cross section is determined from
DPR experiments, the results depend on a normalization fac-
tor �the total area of the band�. Since in NMR, the cross
section is related to the observable �T1� by known constants
and variables, spin relaxation experiments are expected to
yield values for S�(02̂00�A�AB with a smaller uncertainty
than DPR experiments. Furthermore, DPR scattering can
have contributions from long-lived dimers which could be
substantial at the lower temperatures, making direct compari-
sons with CT results difficult, as has been suggested earlier60

and suspected to be important in the N2–Ar case.4 For the
14N2 molecule the relaxation of the 14N nucleus in the gas
phase is completely dominated by the quadrupolar mecha-
nism and the quadrupole coupling constant is well known.
Thus, it is possible to obtain S�(02̂00�A�AB directly from
spin relaxation experiments.

Nuclear spin relaxation can also be affected by the mo-
lecular rotation when a magnetic coupling exists between the
nuclear magnetic moment and the magnetic moment associ-
ated with the molecular rotation. The spin–rotation mecha-
nism is important for nuclei with a spherical charge distribu-
tion �spin 1/2�. The cross section related to this mechanism,
S(0100�A)AB , can be related to the relaxation time through
the spin–rotation coupling constant, Ceff . This constant is
related to the components of the spin–rotation coupling ten-
sor, which is a 2nd rank property. For a linear molecule Ceff
is the perpendicular component of the spin–rotation tensor
and the relation between the relaxation time and the cross
section is

T1�
3�2

2Ceff
2 IkT

� v̄S�0100�A �AB .

Using an approach similar to that used for the quadrupolar
mechanism, Gordon58 has shown

S�0100�A �AB��1/2�J2��
 ��J��J�2� i2�b db .

The cross section S(0100�A)AB is also known as �J . The
15N spin in the 15N2 molecule in the gas phase is completely
dominated by the spin rotation mechanism. The spin rotation
constant for the 15N2 molecule can be derived from the ab-
solute 15N shielding scale which relates the shielding in the
N2 molecule to the known absolute shielding in the primary
reference molecule, NH3. The absolute shielding provides
the perpendicular component of the spin rotation tensor
which is the only nonvanishing component in the case of the
linear molecule. Thus, it is possible to determine

FIG. 6. Comparison of calculated and experimental values of �J

�S�0100�A�AB
 in N2–Kr. The experimental data was obtained in our labo-
ratory �Ref. 27� and has an uncertainty of 1 Å2.

FIG. 7. Comparison of calculated and experimental values of �	,2
�S�02̂00�A�AB
 in N2–Kr. The experimental data was obtained in our labo-
ratory �Ref. 28� and has an uncertainty of 1 Å2.
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S(0100�A)AB for the N2–Kr system directly from spin re-
laxation experiments in the mixture. Both the 15N2 and 14N2
relaxation measurements in the gas phase have been done in
our laboratory and reported earlier.27,28

Examination of Figs. 6 and 7 shows that similar trends
are observed in the calculated �J and �	,2 based on the
N2–Kr surfaces studied: in all cases, the relative ordering of
cross section magnitudes decreases from MNT, BNT8,
TNTA to GR. The ordering of the various versions of the
TNT surface has the TNTA as the lowest, followed by the
TNTB and the TNTM giving the cross sections greatest in
magnitude.

The best agreement for the spin–rotation cross section
�J is provided by the GR surface which only very slightly
overestimates the experimental values at the lower tempera-
tures. Aside from the GR surface, the TNTA surface provides
the next best agreement with experiment. Since the TNTA,
TNTB, MNT, and BNT8 surfaces contain the same repulsive
contribution, the differences in the calculated �J values are
solely due to the different sets of dispersion coefficients. The
effect of the dispersion coefficients on the anisotropy of the
potentials can be seen by comparing the values of �� and
�RV in Table III.

Although the calculated values for �	,2 follow similar
trends as �J , the TNTA surface is now doing a much better
job, agreeing with the low temperature data and falling just
outside of the upper bound of the experimental uncertainty at
400 K. The comparison of the experimental with the pre-
dicted temperature dependence of �	,2 favors the BNT8 and
MNT surfaces over the TNTA surface. Table V lists the cal-
culated and experimental values for �	,2 and �J .

V. DISCUSSION

The isotropic part of the BTT potential form has proven
reliable for the N2–lighter rare gas atom interactions. We

have already noted in the Introduction section the quality of
the transport and other data predicted by the BTT surfaces
for N2–He, N2–Ne, and N2–Ar interactions. When consider-
ing those properties which specifically depend on the aniso-
tropic part, the ability of the TT model to reproduce experi-
ment appears to decrease in going from He and Ne to Ar as
the collision partner. For example, in the N2–He and N2–Ne
systems, the BTT potentials predict room temperature DPR
cross sections and field effect data2,3 while for the N2–Ar
system, the potential overestimates both room temperature
DPR cross sections and the NMR cross sections determined
by quadrupolar relaxation.4 It has been shown4 that for
N2–Ar the BTT is slightly too anisotropic in the region near
� �that is, �� is too large�, while the isotropic part is reason-
ably good in predicting all those experimental data that are
determined in large part by the isotropic part of the potential.
The BNT8 surface that we have assembled is the closest
analog to the BTT surfaces with the major difference in the
derivation of the A and b parameters and the lack of P4
anisotropy. This surface does not reproduce the experimental
B12 values but does predict diffusion and viscosity cross sec-
tions in agreement with the available experiment. It also
overestimates both sets of NMR cross sections. It is not clear
whether the fault of this surface is due to the Born–Mayer
parameters or the dispersion coefficients. In comparing the A
and b parameters determined by the site-to-site charge den-
sity overlap combining rule32 for each orientation �in Table
I�, the magnitude of A increases in going from N2–He to
N2–Kr and then for N2–Xe, decreases to values similar to
N2–Ne for A � and N2–Ar for A� . The b values generally
decrease with increasing mass of the noble gas collision part-
ner with the values for N2–Ar and N2–Kr nearly identical.
Since the charge distribution data was only available for dis-
tances of 3–5 bohr, extrapolated values, assuming an expo-
nential dependence on the distance were used to determine
values for the N2–noble gas interactions.32 This can lead to

TABLE V. Comparison of calculated and experimental values for the NMR cross sections.a

T/K GR TNTA TNTB TNTM MNT BNT8 Experimentb

�J

223.1 24.651 29.558 34.162 36.733 39.325 39.310 22.7
223.3 24.631 29.536 34.140 36.707 39.298 39.283 22.9
257.0 21.735 26.333 30.776 33.304 35.292 35.300 20.3
288.5 19.682 24.088 28.341 30.643 32.364 32.393 18.6
325.7 17.807 22.172 26.088 28.038 29.642 29.677 16.8
350.6 16.790 21.127 24.854 26.600 28.150 28.181 15.9
377.8 15.842 20.017 23.697 25.256 26.749 26.775 14.7
396.0 15.285 19.453 23.014 24.465 25.921 25.943 15.7
398.2 15.222 19.391 22.935 24.375 25.826 25.848 14.9
�	,2
225.0 50.441 52.180 56.989 63.932 61.486 60.784 48.8,53.5,51.2
233.5 49.233 51.044 55.872 63.023 60.270 59.606 46.9
278.1 44.010 46.173 50.991 57.648 54.901 54.390 45.2
312.3 40.953 43.316 48.094 54.025 51.695 51.243 38.0,39.4,39.5
329.7 39.628 42.087 46.829 52.435 50.291 49.847 37.5
353.8 37.991 40.591 45.261 50.590 48.550 48.106 34.8
397.0 35.480 38.338 42.858 48.220 45.860 45.440 32.0
405.7 35.035 37.925 42.429 47.719 45.378 44.962 33.0,35.4,35.6

aCross sections are in Å2.
bExperimental values obtained in our laboratory.
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errors in the estimates for the larger distances involved in the
N2–heavy atom interactions. The quality of the exponential
form depends on the correlation parameters K and � used in
the power-law type description of the mixed interaction po-
tential energy,32

V�90° �A ,BC�KAB
�90° ��SAB

�90° �

R2 ��AB
�90° �

�KBC
�90° ��SBC

�90° �

R2 ��BC
�90° �

to be independent of the separation of the atoms. The use of
the combining rules for KAB and �AB may be the greatest
weakness. Indeed in Table I where the Nyeland–Toennies
values can be compared with BTT values, discrepancies of
up to about 50% in A and about 4% in b are found.

Of the Tang–Toennies type surfaces, the TNTA surface
best reproduces B12 , diffusion, viscosity and NMR cross sec-
tion data. The ab initio dispersion coefficients used in this
surface were calculated by Thakkar et al.34 and combine the
many-body perturbation theory �MBPT� method formulated
by Wormer and Rijks61 applied to N2 and the same method
but without the time-dependent coupled Hartree–Fock �TD-
CHF� exclusion principle violating �EPV� terms62 for the
noble gas atoms. In the TNTB surface, the dispersion coef-
ficients were determined from the same polarizabilities for
the Kr atom but new polarizability and moments of N2 cal-
culated without the EPV terms. Wormer and Hettema found
that the exclusion of these terms gave a better description of
the H2O–H2O and Ar–NH3 interactions.62 The exclusion of
the EPV terms brings the approach closer to finite-field
MBPT except that Hartree–Fock orbitals which are un-
coupled to the external field are used.35 It is this inadequacy
in the treatment of the correlation contribution that led
Hettema et al. to conclude that the DOSD values should be
used for C6

�0� and C6
�2� instead of their MBPT values.35 Al-

though the TNTB surface utilizes a more consistent set of
dispersion coefficients, the combination of the Born–Mayer
parameters in the TT form yields a PES that is too aniso-
tropic. At present, it is not clear if the inadequacies of the
TNTB surface are due to the charge-overlap combining rule,
the MBPT method used in the dispersion coefficients or both.

The MNT surface is most similar to the BNT8 surface
and provides insufficient agreement with the experimental
data considered. This surface is the only one of the Tang–
Toennies type surfaces which explicitly contains only contri-
butions of P0 and P2 throughout the surface. In the other TT
surfaces, the repulsive parameters are limited to describing
P0 and P2 symmetry while the dispersion coefficients in-
clude additional symmetry contributions. It may be argued
that the repulsive parts of the TT surfaces used here do not
correctly compensate for the increased anisotropy in the at-
tractive tail, assuming, of course, that the repulsive potential
energy is sensitive to higher order anisotropies.

The TNTM surface uses a modified description of the
radial dependence of the repulsive interactions in the 	�0°
cut. Originally, the polynomial dependence of the exponen-
tial was introduced by Aziz to improve the TT model poten-
tial’s ability to describe the He–He interaction.38 We have
found this functional form sufficiently flexible to allow the
desired similar shapes of the 	�0° and 	�90° cuts of the

surface. As mentioned, this was done to compare the effect
of a parallel repulsive wall which would give rise to a
�nearly� constant anisotropy for R��. The TNTM surface
differs from the TNTA primarily in the description of the
parallel configuration where it provides a stronger repulsion
which also increases the anisotropy as shown in the �RV

values. As it turns out, the TNT surfaces are too anisotropic
already, so this modification makes for a worse agreement
between the predictions from this surface with these observ-
ables which depend in part on the repulsive wall. The agree-
ment with the B12 data of the values calculated from the
TNTM surface is also expected since the modification does
not significantly alter the volume of the potential bowl. The
increased anisotropy along the repulsive wall leads to larger
�J and �	,2 values in correspondence with the conclusions of
Beneventi et al.4

The impressive agreement of the GR surface with the
NMR cross sections seems to imply that the molecular beam
data probes the same parts of the surface as the relaxation
cross sections. However, the agreement here may be fortu-
itous since the CO2–Ar surface by the same author22 does
not reproduce experimental �J values.53 The molecular beam
data used in the fit of the Rotzoll surface is most sensitive to
the anisotropy in the well depth �the a parameter� and to a
lesser extent, the isotropic parameters R̄m , �̄ and the anisot-
ropy in the radial position of the well �the b parameter�.14 On
the other hand, in their multiproperty optimization for the
N2–Ar PES, Beneventi et al. found the NMR cross sections
to depend on the radial anisotropy.4 The �	,2 cross section
was most sensitive to the P2 anisotropy of the radial position
of the well in the Morse–Morse–spline van der Waals
�MMSV� piecewise potential function for N2–Ar. The �J

cross section, which involves the complete quantum me-
chanical concept of angular momentum reorientation, was
found to depend on both the anisotropy in Rm and the P2

anisotropy in the repulsive wall, although in both cases, the
cross sections showed no significant dependence on the an-
isotropy of the well depth. Therefore the NMR cross sections
do indeed provide valuable information on the anisotropy of
the potential surface that is not directly probed by the scat-
tering data.

Of the a priori Tang–Toennies type potentials, the TNTA
surface best reproduces all of the experimental data consid-
ered. These TNT surfaces provide a convenient means to
compare different anisotropies of a particular functional form
and the respective effects on the �J and �	,2 cross sections.
The results for the NMR cross sections indicate that the an-
isotropy of the interaction is best described by the Rotzoll
potential among the six PES considered here. The TNTA
gives a disappointing second best agreement, and the others
are much worse. The much larger �Rm , ��, �R1000 , and
�R5000 of these potentials �which uniformly predict too large
�J and �	,2 cross sections� compared to Rotzoll’s �which
predicts �J and �	,2 cross sections that are in good agreement
with experiment� underscores the great sensitivity of the mo-
lecular reorientation cross sections to the radial anisotropy,
which agrees with the earlier conclusions of Ref. 4 for the
N2–Ar system. The sensitivity of these cross sections to the
anisotropy in the well depth �� is demonstrated by the very
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different results for the MNT and TNTB surfaces which have
identical radial anisotropies �same �Rm , ��, �R1000 , and
�R5000� but which differ greatly in ��. This sensitivity of the
molecular reorientation cross sections to �� has not been
noted before.

Of the three transport properties considered here, the cal-
culated values for the thermal conductivity coefficient con-
tain the most uncertainty. This is due first to the use of the
first order Chapman–Cowling approximation in determining
the pure gas cross sections from experiment. For pure Kr, we
reproduce the experimental value for �iso of 9.49 mW/mK.
However, for pure N2 we calculate a value of 25.64 mW/mK
compared to the experimental value26 of 26.03 mW/mK. Ef-
forts to correct this discrepancy within the first order ap-
proximation are in progress.63 Second, the first order ap-
proximation is known to contain  1% uncertainty when
applied to the mixtures due to neglect of polarizations
terms.57�b�

We now examine the characteristics of the NMR cross
sections. It has already been established in the N2–Ar studies
of Ref. 4 that both �J and �	,2 are sensitive to the radial
anisotropy in the repulsive wall; an increase in the anisotropy
increases the likelihood of the noble gas atom to cause a
change in the molecular rotational angular momentum of N2.
This again is found in comparing the results for the TNTA
and TNTM surfaces. These surfaces have nearly identical
attractive parts and differ significantly in their description of
the repulsion in the parallel orientation, leading to a higher
repulsive anisotropy for the TNTM surface. Furthermore, we
have discovered that �J and �	,2 are somewhat sensitive to
the anisotropy of the well depth. The MNT and TNTB sur-
faces differ in the anisotropy of the well depth where the
MNT has a value of 71.79 cm�1 for �� while TNTB has a
value of 49.59 cm�1. Even though these surfaces have nearly
identical radial anisotropies, the values for the NMR cross
sections predicted by the MNT surface are larger than those
of the TNTB. The combination of these conclusions, that the
radial anisotropy and the anisotropy in � both contribute to
�J and �	,2 explains why the TNTB surface predicts larger
values for these cross sections than does the TNTA.

In their landmark work on the HCl–Ar system, Neilsen
and Gordon studied the ability of various versions of a PES
to describe a set of experimental data.31 Their semiclassical
treatment permitted a detailed account of the observables and
their dependence on the potential surface and the initial con-
ditions such as the initial rotational energy of HCl, initial
relative translational energy and the impact parameter. In the
investigation of the NMR relaxation times, Neilsen and Gor-
don concluded that only the magnitude of spin–rotation re-
laxation time �which is directly related to �J� provides a
probe of the PES and that measurements at several tempera-
tures would only serve as a check on the precision of the
data. For the HCl–Ar system the temperature dependence
was found to follow a simple power law

T1�T ��T1�300 �*�T/300 �n,

where the relaxation time goes as the classical value31 of
n��3/2 which implies that the cross section depends on
temperature as T�1. Experimental investigations of �J in our

laboratory for about 100 collision pairs have shown that the
temperature dependence of the �J cross section �and, of
course, the relaxation time� over a 200 degree temperature
range can be described by the power law

�J�T ���J�300 �*�T/300 �mJ

with mJ�0 �Ref. 29 and references therein�. For many col-
lision pairs which involve the HCl molecule, mJ is found to
be approximately �1. However, this is not necessarily the
case for the other collision pairs where the value of mJ varies
between �0.6 and �1.6. We find that the power law pro-
vides an adequate description of the present trajectory results
for �J(T) over a finite temperature range. Figure 8 shows
natural log plots of the calculated �J values from the TNTA
surface and the best linear fit. In the region of experimental
interest, i.e., for 200 K!T�400 K, �ln�T/300���0.4 to 0.3

a single factor of (T/300)mJ describes the temperature de-
pendence where mJ is negative but not equal to unity and in
fact, we find the value of mJ to depend on the PES used.
Table VI lists the values for mJ �obtained from similar fits�
for the various N2–Kr potentials and does show that the tem-
perature dependence of �J �or the related relaxation time� is
indeed dependent on the characteristics of the PES. Also in
Table VI are listed the values of m	,2 for the temperature
dependence of the �	,2 cross section,

�	 ,2�T ���	 ,2�300 �*�T/300 �m	 ,2

for the same 200 deg range. As in the case of mJ , each
surface predicts a different value for m	,2. By comparing the
difference of m	,2 and mJ for each of the surfaces, it becomes
evident that for these surfaces the temperature dependence
for �	,2 and �J are not related. This is fortunate for our origi-

FIG. 8. Power law fits to the temperature dependence of �J and �	,2 from
experiment �Refs. 27 and 28� and from the TNTA PES. The straight line fits
are made only over the experimental temperature range.
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nal assumption was that the temperature dependencies of the
NMR cross sections, not just their magnitudes, are sensitive
tests of anisotropic potential surfaces.

Although Neilsen and Gordon did not have experimental
values for the quadrupolar relaxation in HCl–Ar, they con-
cluded that both the magnitude and the temperature depen-
dence provide two independent bits of information on the
PES. The importance of the temperature dependence for �	,2
is rationalized by considering the strong energy dependence
of the reorientational behavior of the low J states.31 In our
investigations of the NMR quadrupolar relaxation mecha-
nism and the related cross section �	,2, we have found that
the power law also provides a good representation of the
temperature dependence for collisions of N2,28 NNO,54 and
CD4 �Ref. 54� with Ar, Kr, Xe, HCl, N2, NNO, CO, CO2,
CH4, CF4, and SF6. The values for m in these systems is less
than zero and varies between �0.6 and �1.0. Likewise, our
classical trajectory results show that different descriptions of
the N2–Kr interactions can predict different temperature de-
pendencies.

The ratio of the cross sections, �	,2/�J which has been
found to be approximately 2.1 for nearly all N2–X pairs �X
including Ar, Kr, Xe, CO, N2, CO2, HCl, CH4, CF4, and
SF6� examined experimentally28 has been a motivation for
this work. What we find in Table VI is that for the N2–Kr
system the ratio predicted by different potential surfaces is
different, ranging from 1.620 for the BNT8 surface to 2.197
for the GR surface, to be compared with 2.3 from experi-
ment. This again demonstrates that the NMR cross sections
are very sensitive to the details of the anisotropy of the po-
tential. It thus appears that taken together, the two NMR
cross sections, measured over a range of temperatures, can
provide different probes of the PES.

VI. CONCLUSIONS

These classical trajectory results provide the first inves-
tigation of collision cross sections from anisotropic potential
energy surfaces describing the N2–Kr interactions. Of the
experimental data that we have used to compare the various
potential energy surfaces for N2–Kr, the diffusion coeffi-
cients are the least discriminating. All the PES used here
gave excellent agreement with experiment, except the TNTM
surface. The mixture viscosity is likewise not highly dis-
criminating. Similar results are obtained for the thermal con-
ductivity coefficient showing once again that the TNTA,
TNTB, GR, MNT, and BNT8 represent the isotropic part of

the surface well enough to reproduce these transport proper-
ties. In addition, the TNTA and TNTB surfaces best repro-
duce the B12 experiment, while the other surfaces underesti-
mate the experimental values.

The properties which are known to be sensitive to the
anisotropy of the PES are pressure broadening of the depo-
larized Rayleigh scattering �DPR�, gas phase nuclear spin
relaxation, and field-effect phenomena �electric and magnetic
field effects on transport properties�. The temperature depen-
dence of these properties can be used to fit or refine anisotro-
pies of potential energy surfaces. The GR surface predicts
the NMR cross sections extremely well with the TNTA giv-
ing the next best results. Although the TNTA and TNTB
surfaces do not reproduce the NMR cross sections as well as
the GR surface does, these TNT surfaces may well be gen-
erally better representations of the true surface. The overes-
timation of the NMR cross sections by the other N2–Kr sur-
faces is most likely due to the higher anisotropy in the
repulsive wall, embodied by the �RV values listed in Table
III. The TNTM surface predicts larger values for the NMR
cross sections than does the TNTA or TNTB due to the larger
anisotropy in its repulsive wall. This agrees with the results
of Beneventi et al. who found that an additional P2�cos 	�
angle dependence in the repulsive wall gave larger values for
�	,2 for N2–Ar.4

Considering all these data, and the fact that the GR po-
tential was fitted to reproduce molecular beam scattering re-
sults, the GR surface gives the best overall agreement with
experiment, although it fails in predicting B12 values. Since
the interaction second virial coefficient depends in such a
general way on the PES �i.e., through an integral over the
entire surface�, this inability to reproduce B12 values appears
to indicate a basic flaw in the GR surface. The GR surface
can be refined to reproduce the pure rotational transitions in
the vibrational ground state of the isotopomers of
82–86Kr–14,15N2 van der Waals complex64 and improve agree-
ment with the experimental B12 values while maintaining the
agreement with the diffusion, viscosity, thermal conductivity,
and NMR data. This present work suggests the direction of
refinement; the isotropic averages R̄m and �̄ need to be
slightly modified such as to improve the area of the well and
the location of the repulsive wall in the isotropic component
while maintaining �Rm , ��, and �� close to the values for
the original Rotzoll potential. The classical trajectory calcu-
lations on this refined surface will be reported later.63 Also,
construction of a new N2–Kr surface is in progress.65

TABLE VI. Results from a power-law fit of the NMR cross sections over a temperature range of 200–400 K.

GR TNTA TNTB TNTM MNT BNT8 Experiment

�	,2�300 K� 42.11 44.48 49.30 55.31 52.90 55.30 41�2
m	,2 �0.6205 �0.5455 �0.4684 �0.4957 �0.5170 �0.5190 �0.70�0.06
�J�300 K� 19.17 23.67 27.83 29.94 31.60 34.14 18.1�0.5
mJ �0.8351 �0.7288 �0.6316 �0.6393 �0.7283 �0.7416 �0.74�0.06
�	,2/�J 2.197 1.879 1.771 1.847 1.674 1.620 2.3
m	 ,2 – mJ 0.215 0.183 0.163 0.144 0.211 0.223 0.04
�	 ,2 /� J

a 2.204 1.891 1.771 1.856 1.678 1.702 •••

a
Cross section ratios at 300 K from the classical trajectory code.
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In this paper we have reported the first investigation of
collision cross sections calculated from anisotropic potential
energy surfaces describing the N2–Kr interactions. We have
considered six potential surfaces and found that a simple
model potential of a Lennard-Jones form whose parameters
have been obtained by fitting to molecular beam scattering
data �the Rotzoll potential, used without modification� gives
a reasonably good accounting of the two types of NMR re-
laxation cross sections measured in our laboratory. The char-
acteristics of the anisotropy in the PES that are probed by the
NMR cross sections have been considered and it is found
that both the radial anisotropy and the anisotropy in � con-
tribute to �J and �	,2. The often-assumed empirical power
law dependence of the NMR cross sections on temperature
within a 200 deg range is found to be consistent with the
results of the classical trajectory calculations of these cross
sections, although a more complex temperature dependence
would be necessary to describe a much greater temperature
range. The description of the temperature dependence of the
NMR cross sections by a power law is found to be approxi-
mately valid over the typical temperature range �200–400 K�
of relaxation measurements in the gas phase, for all of the
potentials considered here. The temperature dependence of
�J and �	,2 are different for each PES considered here, as
should be the case, and differences in the temperature depen-
dence of these cross sections are indeed found experimen-
tally for ten N2–X pairs.28 The interpretation of the intrigu-
ing approximately �	,2/�J�2.1 ratio of these cross sections is
still an open question.
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