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1 INTRODUCTION

The nuclear magnetic moment is a very sensitive site-
specific probe of electronic environment and of dynamics in
the gas, liquid, or solid phase. In this article, we specifically
consider the nature of the information that can be obtained
in the gas phase. Why should one do NMR spectroscopy
in the gas phase? In the binary collision limit and in
the zero-pressure limit, experimental measurements can be
directly connected to quantities that can be calculated from
first principles. Gas phase measurements therefore provide
direct stringent tests of calculations of molecular electronic
properties of the isolated molecule such as the rovibrationally
averaged chemical shift, tests of intermolecular shielding
surfaces and intermolecular potential surfaces from density
and temperature dependence of chemical shifts in the binary
collision limit, tests of relaxation theory near the T 1 minimum,
and experimental values of cross sections for relaxation, which
have a direct connection with the anisotropy of intermolecular
potentials. Gas phase NMR measurements also provide cross
sections for chemical reactions and intermolecular vibrational
energy transfer, which are discussed in Gas Phase Studies of
Chemical Exchange Processes. The gas phase allows us to
do experiments in theoretically tractable systems, then carry
over the understanding to the less tractable condensed phase
systems where possible.

Variable temperature studies can be carried out in the gas
phase, where density is a variable that is independent of tem-
perature. Equivalent experiments in the liquid phase would
require high-pressure studies. The ability to work in a regime
where only two-body effects are important permits the quan-
titative characterization of the observations with well-defined
quantities such as the second virial coefficient of the chemical
shift, which is a direct test of intermolecular shielding surfaces.
The linear density region provides collision cross sections
for molecular reorientation, or rotational angular momentum
transfer, or intermolecular vibrational energy transfer lead-
ing to unimolecular reaction. These provide stringent tests of
anisotropic intermolecular potentials, distinguishing between

superficially similar potentials, and, in favorable cases, permit-
ting refinement of the best available ones entirely on the basis
of gas phase relaxation data. Furthermore, one can extrap-
olate the measured quantities to the zero-pressure limit to
obtain the properties that are characteristic of the nearly iso-
lated molecule, such as chemical shifts and coupling constants,
which in turn can be related to intramolecular shielding and J
coupling surfaces. At this limit, the intrinsic rate with which
an energized molecule in the absence of collisions under-
goes a unimolecular reaction such as ring inversion can also
be obtained (see Gas Phase Studies of Chemical Exchange
Processes). A recent review of gas phase NMR studies span-
ning the density range 1016 –1021 molecules cm−3 and pres-
sures from under 1 torr to 50 atm provides an overview, includ-
ing experimental details.1 In this article, we shall discuss only
the intermolecular effects on chemical shifts, the temperature
dependence of chemical shifts in nearly isolated molecules,
and spin relaxation in the gas phase.

2 INTERMOLECULAR EFFECTS ON CHEMICAL

SHIFTS

The nuclear magnetic shielding σ is determined by
the electronic distribution around the nucleus of interest.
Since interactions between molecules necessarily affect this
distribution to some extent, there are observable effects of
intermolecular interactions on σ . These intermolecular shifts
can be rather large, and are usually observed as gas-to-
liquid shifts or solvent shifts, which are difficult to describe
quantitatively and interpret theoretically because they are
dependent on the structure of the liquid. A table of gas-to-
liquid shifts is given in Chemical Shift Scales on an Absolute
Basis. On the other hand, in a gas of modest density, the
nuclear magnetic shielding σ , like other molecular electronic
properties, can be expressed in terms of a virial expansion in
density ρ:2

σ(T , ρ) = σ0(T ) + σ1(T )ρ + σ2(T )ρ2 + · · · (1)

Here, the terms dependent on the gas density ρ characterize
the intermolecular effects, while the independent molecule
value of the shielding, σ 0(T ), is a function of temperature
owing to averaging over intramolecular motions (vibrations
and rotations).3 By analogy with the second virial coefficient
in the usual expansion for PV /RT , σ 1(T ) may be called a
second virial coefficient of the nuclear shielding. Both σ 0(T )
and σ 1(T ) can be obtained from experiments in the gas phase.4

In a mixture of gases, σ 1(T ) due to A–A collisions and σ 1(T )
due to A–B collisions can be determined separately in a series
of experiments. The sign of the intermolecular shielding effects
has been found to be uniformly negative,3,5

[σ(T , ρ) − σ0(T )] < 0 (2)

that is, intermolecular effects are deshielding, with only a few
exceptions such as the nitrogen shielding in nitriles, pyridine
and other similar nuclear sites involving n → π* excited
states.6
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2.1 Second Virial Coefficient of Nuclear Shielding

Operationally, σ 1(T ) is obtained as

σ1(T ) = − 1

ν0
lim
ρ→0

(
∂ν

∂ρ

)
T

(3)

Since the gas phase measurements are not carried out on
spherical samples, the measured σ 1(T ) have to be corrected
for the bulk susceptibility, given to a good approximation by
σ 1bulk = 2

3πχmol or − 4
3πχmol for the perpendicular or parallel

arrangement of a cylindrical sample in the magnet, where χmol
is the molar magnetic susceptibility of the sample. This is the
same for all nuclei in the sample, and is a sizable fraction
of the observed apparent σ 1(T ) for nuclei such as 1H and
13C, whereas it is a very small fraction for 129Xe. Observed
values of σ 1 range from −1 × 10−3 to about −1 ppm amagat−1

(1 amagat = 2.687 × 1025 molecules m−3, the density of an
ideal gas at 1 atm and 273.16 K). The range of values of σ 1
for a given nucleus not unexpectedly reflects the chemical
shift range of the nucleus.3 Xenon-129 in the Xe atom is
found to be an ideal probe of intermolecular interactions. Xe
intermolecular chemical shifts are very large in comparison
with other nuclei.7 After correction for bulk susceptibility,
typical values of σ 1 at room temperature are3,8,9 as shown
in Table 1.

A summary of second virial coefficients of shielding for 19F
in various molecules has been given by Jameson.1

2.2 The Intermolecular Shielding Surface

For 129Xe in dilute xenon gas, we can explicitly write σ 1(T )
in terms of the intermolecular potential function for Xe–Xe
interactions and the nuclear shielding function for a Xe atom
in a pair of interacting Xe atoms:

σ1(T ) =
∫ ∞

0
4πr2 dr[σ(r) − σ(∞)] exp

[
−V (r)

kBT

]
(4)

where σ (∞) is the nuclear shielding of the isolated Xe atom
and σ (r) is the shielding of the Xe atom under the influence of
a neighboring Xe atom at distance r from it. The expression
applies to any pair of rare gas atoms, like or unlike.

A mean field long-range model for [σ (r) − σ (∞)] had
been advanced by Raynes, Buckingham and Bernstein10

(RBB) for a molecule in the presence of a neighbor

Table 1 Second Virial Coefficients of Nuclear Shielding

−σ 1(ppm amagat−1)
1H 0.0003–0.008
11B 0.0085 (in BF3)
13C 0.0022–0.0105
15N 0.0026–0.04
19F 0.006–0.05
31P 0.0023–0.266
77Se 0.007 (in SeF6)
83Kr 0.131
125Te 0.01 (in TeF6)
129Xe 0.166–0.75

at distance r and orientations given by θ1, θ2, φ1,
φ2:

[σ(r, θ1, θ2, φ1, φ2) − σ(∞)] = σa + σE + σW (5)

They include a magnetic anisotropy term σ a, electrical terms
due to permanent electric moments on the neighbor σE, and a
‘van der Waals term’ σW, the intermolecular contributions to
shielding due to dispersion, which was modeled by fluctuating
electric fields produced at the molecule by mutual interactions
with the neighbor in accordance with the London model of
dispersion forces. The latter was taken to be of the form
−Bα2I 2r−6, involving the polarizability and the ionization
potential of the neighbor molecule and an empirical parameter
B , which was taken to be the same as the average B in
the quadratic response of the shielding in a molecule to a
uniform static electric field. Later refinements involve the
polarizability and ionization potential of the observed molecule
as well, for example, −3Bα2I 1I 2r−6/2(I 1 + I 2). This is the
only term in the model that applies to a pair of rare gas
atoms. However, the magnitude of the average B that has
been obtained by ab initio calculations11 for 129Xe in a Xe
atom in a static uniform field when used in this model gives
a value much too small to account for the observed σ 1(T ).
Therefore, if the model is to be used in this form, the B
parameter in it can no longer be identified with the average
B in the shielding response to a uniform static electric field.
Indeed, when the model is used, the empirical B parameter
found in fitting the RBB equation, equation (5), to experiment
is at least an order of magnitude larger, because this term
in the model makes up for the shielding change due to
overlap and exchange—terms that are missing in the long-
range model, and which can only be obtained by ab initio
calculations on the ‘supermolecule’ (the interacting pair of
molecules).

Ab initio calculations of the intermolecular shielding
function for 39Ar in the argon atom interacting with another
argon have revealed that dispersion contributions are not as
important as was originally thought, and constitute only a
minor correction when second-order correlation effects on
shielding are included in the supermolecule calculation,12

despite the nearly r−6 dependence of the shielding function
in the region of interest (i.e., those values of r favored by the
exp [−V (r)/kBT ] weighting). Therefore, to the extent that ab
initio shielding calculations at the level that includes second-
order correlation effects are the basis for the inclusion of
dispersion contributions, one may conclude that there are only
very small contributions from dispersion in the intermolecular
shifts of rare gases. The shape of the intermolecular shielding
function for Ar–Ar is shown in Figure 1. This is the
same shape as has been found for the shielding of 39Ar
in the Ar atom under the influence of Ne, and for 21Ne
shielding in the Ne atom in the presence of another Ne
atom or a He atom.13 It has been found that when this
shielding function is scaled up to 129Xe in various Xe–rare
gas pairs, it is possible to reproduce quantitatively the σ 1(T )
observed for 129Xe in pure xenon, and also for Xe with
Kr and for Xe with Ar, in their signs, magnitudes, and
temperature dependences.12 The relative magnitudes of the
temperature dependences in these three systems are also
reproduced.
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Figure 1 Intermolecular shielding function for 39Ar in Ar–Ar
obtained from ab initio calculations. Adapted from Jameson and de
Dios12 by permission. The values denoted by � include second-
order correlation contributions, all other values are from a coupled
Hartree–Fock calculation, using the local origins method described
in the article Chemical Shift Calculations by the LORG & SOLO
Approaches

2.3 The Nuclear Site Effect

Intermolecular shieldings are different for different nuclear
sites in a molecule under the influence of a solvent molecule.
In averaging over all the orientations of the molecule
bearing the observed nuclei, the peripheral nuclei suffer larger
intermolecular effects than nuclei located in the interior. That
is why relatively protected nuclei such as 77Se in SeF6 or
125Te in TeF6 have fairly small intermolecular shifts compared
with 77Se in H2Se or 125Te in H2Te. A direct comparison is
possible when the nuclei are the same type and in the same
molecule, such as the two N nuclei in the NNO molecule
or the three different 19F nuclei in F2C=CFH. A simple
model by Rummens et al.14 depends on the averaging of
r−6

NS distances between nucleus N and solvent S, while the
isotropic intermolecular potential is expressed in terms of the
separation RCS between the center of mass of the molecule
and the solvent. The average intermolecular shift can then
be expressed in terms of the distance d between the nuclear
site and the center of mass of the molecule. The distance d
changes systematically for each of the three types of F nuclear
sites in F2C=CFX, where X varies as H, F, Cl, Br, and I. It
has been demonstrated that in this series of molecules, this
model provides semiquantitative agreement with experiment
in the pure gases; the σ 1(T ) for the three different 19F nuclei
vary with the respective values of d for the nuclear site as
expected.15 Similarly, in the NNO molecule, the end nitrogen

nucleus has a larger intermolecular shift in pure NNO, and in
NNO–rare gas, and NNO–SF6 mixtures.

2.4 Intermolecular Contact Shifts

The 129Xe chemical shifts for Xe in the paramagnetic gases
O2 and NO exhibit a linear dependence on the density of O2
(or NO) with unusually large slopes.16,17 There is, of course,
the bulk susceptibility contribution to the apparent σ 1(T ), but
this can easily be corrected for, using

χmol = NAvo〈µ2
eff〉/3kBT (6)

where 〈µ2
eff〉 is a very nearly temperature-independent 8 Bohr

magnetons for O2 and a strongly temperature dependent
average value for NO. In addition to this bulk susceptibility
contribution, there is a strongly temperature-dependent true
σ 1(T ), which has a very different behavior from that in the
129Xe σ 1(T ) for Xe in Ar, for example. This σ 1(T ) includes,
in addition to the usual intermolecular shielding contribution,
a contact shift that arises from the finite electron spin density
ρspin at the 129Xe nucleus from the interaction of the Xe with
O2 or NO, which Buckingham and Kollman18 attributed to the
overlap of the O2(πg*) or NO(π*) orbitals with the Xe(5s).
That is,

σ1(contact) = − 4

3
π

〈µ2
eff〉

3kBT

∫ ∞

0
4πr2 drρspin exp

[
−V (r)

kBT

]
(7)

It was found that if the normal 129Xe σ 1(T ) for Xe in
hypothetically diamagnetic O2 or NO were taken to be the
same as the observed 129Xe σ 1(T ) for Xe in Ar and the
distance dependence of the shielding change due to contact
shift were similar to that of the σ (r) for 129Xe in Ar, then
the limiting temperature dependence of the contact shift could
be extracted. The latter is found to be 1/T at the lower
temperatures, just as the Curie law behavior predicts, and the
magnitude of the intermolecular contact shielding is roughly
three times that of the 129Xe σ (r) for Xe in Ar. The integrals
shown above can be extracted empirically from the observed
density and temperature dependence of the shifts, and are
found to have a ratio 1.25 for NO/O2, which agrees with the
ratio calculated by Buckingham and Kollman.

2.5 Many Body Terms

The dependence on density becomes nonlinear as the
densities approach liquid densities.19 The intermolecular
shielding contributions from the many body terms are found
to be opposite in sign to the two-body second virial coefficient
of shielding that is found in the dilute gas.1 That is, the
effective density coefficient of shielding for liquids is smaller
in magnitude than the σ 1 obtained in the dilute gas. Both are
deshielding (excepting the cases of nitrile or pyridine nitrogen
nuclei already mentioned), but liquids are less deshielded
than one might expect from direct extrapolation to liquid
densities. The gas-to-liquid shift thus gives an estimate of
σ 1 that is somewhat too small in magnitude, but nevertheless
provides a reasonable estimate of σ 1 when density dependence
measurements cannot be carried out. The general shape of
ab initio intermolecular shielding surfaces and assumption of
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largely pairwise-additive shielding contributions are found to
be consistent with the signs and general magnitudes of gas-
to-liquid and gas-to-solution shifts and adsorption shifts.20

A favorable example is the set of chemical shifts and their
temperature dependence in Xe, Xe2, Xe3, . . . , Xe8 clusters
trapped in zeolite NaA, which have been reproduced by using
grand canonical Monte Carlo averaging of 129Xe shieldings
assuming pairwise additive isotropic shieldings based on ab
initio shielding functions in rare gas pairs.21

3 TEMPERATURE DEPENDENCE OF NUCLEAR

SHIELDING IN THE ISOLATED MOLECULE

After extrapolation to zero density, there should be no
remaining temperature dependence in the case of xenon.
However, it was discovered during measurements of σ 1
that the zero-density intercept of the chemical shift changed
with temperature when the molecule bearing the nucleus had
internal degrees of freedom, and dramatically so for 19F
nuclei.4 In practice, the temperature dependence in the limit
of zero density is not obtained from the intercepts; rather, the
σ 1(T ) function is fully characterized experimentally from the
density dependence of the chemical shift in several samples
and then σ 1(T )ρ is subtracted from every data point to correct
each to the zero-density limit, thereby obtaining [σ 0(T ) −
σ 0(300 K)]. The general shape of these functions is that the
nucleus becomes more deshielded with increasing temperature,
usually with a nonlinear temperature dependence, although in
the cases of 13C in CO and 15N in N2 the function is a linear
one.22 The magnitude of the temperature coefficient depends
on the nucleus—larger for 31P and 19F than for 13C. Some
examples are shown in Table 2. There is some evidence that
the temperature coefficient is very large for transition metal
nuclei, although these have been studied in solution rather

than in the limit of zero-density gas. For a given nucleus, the
temperature coefficient correlates with the shielding, and is
larger for less shielded environments.

The temperature dependence of the shielding results from
the same rotational and vibrational averaging that is responsi-
ble for isotope shifts. In the context of the Born–Oppenheimer
approximation, the separation of the electronic from the
nuclear motion allows an intramolecular potential surface to
be defined, which is then used in finding the vibrational states
and functions. In the same context, the nuclear shielding sur-
face is defined: this is a mathematical surface containing the
values of the shielding as a function of the positions of the
nuclei in the molecule. Some examples of shielding surfaces
are given in Isotope Effects on Chemical Shifts and Coupling
Constants. The entire shielding tensor changes with the molec-
ular internal geometry, but only the isotropic average about all
orientations of the molecule with respect to the external mag-
netic field concerns us in the gas phase. Thus, the isotropic
shielding surface can be described in terms of an expansion
of the shielding in powers of the nuclear displacement coordi-
nates such as bond stretches and bond angle deformations and
the derivatives of the shielding with respect to these stretches
and deformations:

σ(F1) = σe +
(

∂σ

∂r1

)
e

r1 +

(
∂σ

∂r2

)
e

r2

+
6∑

i=3

(
∂σ

∂ri

)
e

ri +

(
∂2σ

∂r2
1

)
e

(
r1)
2 +

(
∂2σ

∂r2
2

)
e

(
r2)
2

+
6∑

i=3

(
∂2σ

∂r2
i

)
e

(
ri )
2 +

(
∂2σ

∂α12∂r1

)
e

r1
α12 + · · · (8)

for 19F in an MF6 molecule, for example. The thermal
average of σ then gives σ 0(T ). The thermal averages of
the nuclear displacement coordinates can be obtained if the
intramolecular force field is available, as they are for SF6,
for example. In Isotope Effects on Chemical Shifts and
Coupling Constants, it is shown how these averages are

Table 2 Temperature Coefficients of the Shielding for Molecules in the Zero-Pressure Limit at 300 K

Molecule dσ 0(T )/dT (ppb K−1) Molecule dσ 0(T )/dT (ppb K−1)
13C CH4 −0 15N N2 −0.85

CO −0.29 NNO −3.5, −8.8
CO2 −0.54 19F BF3 −1.33

19F SiF4 −3.81 CFCl3 −11.6
CF4 −5.01 CF2HCl −4.86

POF3 −5.65 CFHCl2 −5.92
PF3 −6.73 CF3CH3 −10.3
PF5 −9.79 CF2HCH3 −10.8
ClF −10.4 CF3CF3 −11.4
SF6 −12.1 CF3CF2Cl −11.3
TeF6 −16.1 CF2ClCF3 −13.1
SeF6 −22.9 OCF2 −4.33
WF6 −23.3 CF2=CH2 −4.07
NF3 −20.0 CF2=CF2 −8.13
F2 −34.0 CF2=CFH −5.06, −5.11, −6.76

CH3F −1.76 CF2=CFCl −7.87, −8.73, −10.6
CH2F2 −2.89 CF2=CFBr −8.04, −9.07, −11.5
CF3H −5.60 CF2=CFI −6.98, −8.77, −12.8

CF3CN −7.57 31P PH3 −0.5
CF3I −9.25 PF3 −1.7

CF3Br −10.2 POF3 −1.4
CF3Cl −6.78 77Se SeF6 −14
CF2Cl2 −9.06 125Te TeF6 −10

eMagRes, Online © 2007 John Wiley & Sons, Ltd.
This article is © 2007 John Wiley & Sons, Ltd.
This article was previously published in the Encyclopedia of Magnetic Resonance in 2007 by John Wiley & Sons, Ltd.
DOI: 10.1002/9780470034590.emrstm0185



GAS PHASE STUDIES OF INTERMOLECULAR INTERACTIONS AND RELAXATION 5

obtained in general. Given the ab initio surface, or the
shielding derivatives, and the intramolecular force field, the
σ 0(T ) can be calculated and compared with experiment. It
is generally not possible to obtain accurate derivatives of
shielding directly from the experimentally observed σ 0(T )
− σ 0(300 K) functions even using very accurate force fields,
since the nature of the experimental data allows typically only
one, at most two, parameters to be determined empirically. The
empirical shielding derivatives that have been estimated from
the temperature dependence of the shielding of 19F have made
use of the assumption that the bond extension terms completely
dominate the shielding. In this way, estimates of the shielding
derivatives in the fluoromethanes, fluoroethenes, and MF6
type molecules have been made. The observed temperature
coefficients dσ 0(T )/dT for a series of related compounds such
as for 19F in substituted fluoromethanes, and generally for 19F
in binary fluorides, correlate with the 19F chemical shifts in
these compounds, and the least shielded environments show
the largest temperature coefficients. The correlation is even
better with the paramagnetic part of the shielding.9 Although
the derivatives in these particular molecules have not been
provided by ab initio calculations, it has been found that, for a
large number of molecules, the ab initio shielding derivatives
for 19F generally correlate with the shielding itself.20,23 In
the case of F2, the shielding derivative estimated from the
temperature dependence appears to be too large compared
with the ab initio calculations. In N2 and CO, the shielding
first derivatives estimated from the temperature dependences
of the 15N and 13C nuclei, respectively, are roughly the
same as those calculated from the ab initio surfaces for these
molecules.

4 SPIN RELAXATION IN THE GAS PHASE

Spin relaxation in the gas phase provides qualitatively
different information from that in the liquid phase. Since the
intermolecular dynamics in the gas phase can be modeled
more accurately, the gas phase provides critical tests of
relaxation theories, allows quantitative separation of two
or more contributing mechanisms, and provides a direct
connection with the anisotropy of intermolecular potentials.

4.1 Theoretical Treatments of Relaxation and the

Connection with Intermolecular Potentials

NMR studies of spin relaxation in molecular gases
provide a very sensitive probe of the anisotropic part of the
intermolecular potential surfaces. As a function of gas density
ρ, the spin–lattice relaxation time T 1 is long at low densities,
for which the collision frequency is very low, passes through a
characteristic minimum corresponding to a matching between
the collision and spin precession frequencies, and then passes
into a regime in which it increases linearly with gas density,
the so-called ‘extreme narrowing’ regime. As the density
increases, there is a less efficient communication through the
weak intermolecular coupling between the rotational degrees
of freedom (the ‘lattice’) and the nuclear spin system of the
effects of reorienting molecular collisions to the nuclear spins.
The region of the T 1 minimum permits a measurement of the

strength of the interaction that couples the nuclear spin system
to the lattice degrees of freedom. Bloch’s phenomenological
equations (Relaxation: An Introduction) provide a description
of nuclear magnetic relaxation in gas phase systems. In order
to make the connection with intermolecular potential energy
surfaces, it is necessary to express the relaxation times T 1
and T 2 in Bloch’s equations in terms of quantities that may
be directly calculated once an intermolecular potential energy
surface has been specified. There are several approaches: the
traditional one is to apply correlation function theory to a
master equation. This is the approach used by Abragam24 and
by Bloom and Oppenheim.25,26 Another approach is to employ
the kinetic theory of gases in the context of a generalized
Boltzmann equation.27 It has been demonstrated by McCourt
et al.28,29 that the most useful features of each method can be
retained in a unified theory by utilizing a projection operator
formalism to obtain a memory equation for that part of the
distribution function density matrix characterizing the gaseous
system and proportional to the nuclear spin operator Î. The
memory equation thus obtained is utilized to obtain an integral
equation governing the time dependence of the nonequilibrium
part of the nuclear magnetization in terms of a kernel having
the form of an autocorrelation function.

In the single relaxation time approximation (SRTA), a
common correlation time is assumed for all the rotational
levels. A multiple relaxation time approximation (MRTA)
uses a distribution of correlation times, and has been shown
to be necessary in the accurate analysis of the proton
relaxation in HCl and in NH3 molecules in the range of
densities including the T 1 minimum, which then provides
spin rotation tensor elements that are in excellent agreement
with molecular beam values.30 General multilevel expressions
for the contributions to the nuclear magnetic relaxation
from spin rotation, dipolar, intramolecular, and quadrupolar
mechanisms have been given independently by Gordon31,32

and by McCourt29 which we shall illustrate here using the
example of the D2 molecule, since it includes three major
relaxation mechanisms: spin–rotation, intramolecular dipolar,
and quadrupolar mechanisms.

The relaxation of nuclei of rare gas atoms is strictly interm-
olecular.33 Although both intermolecular and intramolecular
relaxation mechanisms contribute in general to the relax-
ation of nuclei in molecular gases, intramolecular relaxation
dominates by five or so orders of magnitude (excepting the
intermolecular relaxation due to a paramagnetic collision part-
ner, which we shall consider later). It is also typical of
the molecular gases that have been studied that shielding
anisotropy and scalar coupling mechanisms are not impor-
tant. We shall also only show here the theoretical expres-
sions (following McCourt29,34,35) appropriate to the linear
density regime (extreme narrowing conditions), which provide
the connection with the anisotropy of intermolecular poten-
tial surfaces. This regime is characterized by T 1/ρ. In H2,
only the spin rotation and dipolar mechanisms, and in D2,
spin–rotation, dipolar and quadrupolar mechanisms have to be
considered. For H2, only the ortho modification has a nonzero
total nuclear spin, whereas in D2, para and ortho modifications
have to be considered separately:

(
ρ

T1

)
lin

=
(

ρ

T1

)
lin,sr

+
(

ρ

T1

)
lin,dq

(9)

The expressions for H2(ortho) are

ρ

T1
= 2

3

(ωH
sr)

2

L0 v
d (1)T · 〈σ v〉−1 · P · d(1) (10)
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(
ρ

T1

)
lin,d

= (ωH
d )2

L0〈v〉 d (2)T · 〈σ T〉−1 · P · d(2) (11)

whereas for the D2 molecule,

(
ρ

T1

)
lin,sr

= 2

3

(ωD
sr)

2

L0〈v〉 d(1)T · 〈σ v〉−1 · P · d(1) (12)

(
ρ

T1

)
lin,dq

=
(ωD

dq)
2

L0〈v〉 d(2)T · 〈σ T〉−1 · P · d(2) (13)

The gas density ρ is measured in amagats, L0 = 2.687 ×
1025 molecules m−3, the number density corresponding to 1
amagat, 〈v〉 is the mean relative velocity (8kBT /πµ)1/2, with
µ the reduced mass of the colliding pair. The other quantities
are described below. The intramolecular spin–rotation and
dipolar frequencies come from the intramolecular interaction
Hamiltonian in terms of first- and second-rank irreducible
tensors:

(14)

The off-diagonal matrix elements of lead to high-
frequency effects in NMR,26,29,36 which will only affect
the NMR relaxation process at densities in which the
collision frequencies are comparable to any of the rotational
frequencies, at which densities the O and S branches of the
Raman spectrum are sufficiently collisionally broadened to
overlap with the Q branch. This is usually the case in liquids.
For H2, such an overlap does not occur even up to densities
of 1000 amagat. For dilute gases, the high-frequency terms
arising from the off-diagonal matrix elements of do not play
a significant role in the relaxation; thus, only the diagonal part
of is taken into account:

(15)

It has been shown that the last two terms give the combined
dipolar/quadrupolar coupling Hamiltonian in terms of the total
spin  Î , −�ωdq

 /(4J 2 − 3) in which

ωD
dq(para) = 2ωD

d − 3
2 ωD

q (16)

ωD
dq(ortho) = 12

5 (ωD
d )2 − 6

5 ωD
d ωD

q + 9
4 (ωD

q )2 (17)

The matrices 〈σ v〉 and 〈σ T〉 contain the state-to-state reorien-
tation effective collision cross sections, averaged over a Boltz-
mann distribution of translational energies, associated with the
irreducible first-rank tensor operator Ĵ and the second-rank
irreducible tensor operator /(4J 2 − 3) respectively. The
population matrix P is diagonal, with the j th element being the
fractional population per state associated with the j th rotational
manifold, e−Ej /kBT /

∑
j (2j + 1)e−Ej /kBT , while d(1) and d(2)

are vectors whose j th elements are the reduced matrix ele-
ments of Ĵ and /(4J 2 − 3) respectively, in the Edmonds
convention:

(18)

(19)

These are equivalent to the equations derived by Gordon.32,36

The correspondence with Gordon’s notation is shown by
Lemaire et al.35 The cross-relaxation terms only become
important at pressures below the T 1 minimum. Furthermore,
with the ortho relaxing at least three times more slowly than
the para D2 and being favored in the 5:1 equilibrium ratio of
these two modifications, only the relaxation of the ortho D2
is observed experimentally. The equations for the relaxation
behavior of D2 are also applicable to 14N2; however, for 14N,
the quadrupolar interaction dominates to the extent that the
other nuclear spin interactions can be totally ignored, so that
the relaxation rates for ortho and para modifications of N2 are
equal.

It has been demonstrated that the (T 1/ρ)lin data of H2 and
its isotopomers at infinite dilution in a rare gas are capable
of distinguishing between the various proposed potential
surfaces of H2 –rare gas (He, Ne, Ar).34,35,37 – 39 Potential
energy surfaces did not differ significantly in their ability
to reproduce various experimental quantities such as virial
coefficients, molecular beam scattering, transport properties
and their field effects, and yet provide different results for
T 1/ρ versus temperature data. The sensitivity of the computed
spin relaxation times to different parts of the H2 –He potential
has been examined in detail.40 Both types of cross sections
obtained from relaxation data in dilute gas are very sensitive to
both the isotropic part of the potential and the P2(cos θ) terms,
and sensitive to the P4(cos θ) terms, but less sensitive to higher
orders. In a further example, the 15N and 14N spin relaxation
data for N2 in Ar have been used to distinguish between
potential surfaces and to refine the best available one.41 While
quantum scattering calculations are essential for the hydrogen
case, it has been shown that classical trajectory calculations
are quite reliable for the case of the nitrogen molecule.

In the single relaxation time approximation (SRTA), in the
extreme narrowing limit, d(1)T · 〈σ v〉−1 · P · d(1) becomes
〈j (j + 1)〉/σ J, where σ J [or S′(01) in the literature on kinetic
theory of polyatomic gases29] is a density-independent cross
section for spin–rotation relaxation. In the same limit, d(2)T ·
〈σT〉−1 · P · d(2) becomes 1

6 〈j (j + 1)/(2j − 1)(2j + 3)〉/σθ,2,
where σθ,2 [or S′(02) in the kinetic theory literature] is a
density-independent cross section for molecular reorientation,
the cross section associated with both dipolar and quadrupolar
relaxation. This cross section differs from that for depolarized
Rayleigh light scattering, σDPR (or SDPR), only in that the
latter includes contributions from a rotating collision partner,
which means that σθ,2 and σDPR are identical when the
collision partner is a rare gas atom. Therefore, for a linear
molecule,

(
ρ

T1

)
lin,sr

= 2

3

(ωsr)
2

L0〈v〉σJ
〈 j ( j + 1)〉 (20)

In the ‘high-temperature’ or classical limit, 〈j (j + 1)〉 = 2I 0kBT
for linear molecules, where I 0 is the molecular moment of
inertia. For homonuclear dipolar relaxation,

ρ

T1
= 4

3
I2(I2 + 1)

(ωd)
2

L0 v σθ,2

1

6

j ( j + 1)

(2j 1)(2j 3)
(21)
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For a quadrupolar nucleus, when the dipolar and the cross
relaxation between dipolar and quadrupolar are negligible
compared with the quadrupolar relaxation rate,

(
ρ

T1

)
lin,q

= (ωq)
2

L0〈v〉σθ,2

1

6

〈
j ( j + 1)

(2j − 1)(2j + 3)

〉
(22)

The average 〈j (j + 1)/(2j − 1)(2j + 3)〉 goes to 1
4 at the high-

temperature limit, so that the above relationships, using the
definitions of ωd and ωq, become the familiar

(
ρ

T1

)
lin,d

= 1

2
I2(I2 + 1)

γ 4
�

2〈r−3〉2

L0〈v〉σθ,2
(23)

(
ρ

T1

)
lin,q

= 3

160

2I1 + 3

I 2
1 (2I1 − 1)

(eqQ/�)2

L0〈v〉σθ,2
(24)

which were first derived by Gordon.42

In a dilute gas, the concept of a correlation time τ is
physically obvious. Since a collision is itself a very short time
event, the correlation time, the time it takes for a molecule
to lose memory of the orientation of its angular momentum
vector, is just the average time between those collisions that
change the orientation of the rotational angular momentum
vector:

τJ = [ρ〈v〉σJ]
−1 or τ2 = [ρ〈v〉σθ,2]−1 (25)

where σ J and σθ,2 are the effective cross sections for collisions
that change the rotational angular momentum vector or its
orientation, defined explicitly above, and can be calculated by
quantum scattering or classical trajectories. The conventional
definition of correlation time τ θ,2 (as most often used in the
liquid phase) is thus 1

4τ 2 for dipolar and quadrupolar relaxation
in linear molecules in a dilute gas.29,43,44

Between collisions, the molecule is rotating freely. The
spin–rotation interaction is not affected by the precession of
the molecular symmetry axis about J between collisions. On
the other hand, in dipolar relaxation, since the spin precession
in the magnetic field is slow compared with molecular rotation
frequencies, only the conserved or rotationally averaged
component of the intramolecular dipolar magnetic field,
modulated by collisions, contributes to the spin relaxation.43

For nuclei with electric quadrupole moments, the relaxation
depends on the coupling to the conserved part of the
electric field gradient tensor, modulated by collisions. The
averaging of second-rank tensor types of interactions leads
to a factor of 1

4 for linear molecules and 1
5 for tetrahedral

spherical tops. Similarly the symmetry axis of a symmetric
top molecule precesses many times about J between collisions,
thus resulting in an averaging of the spin–lattice interaction
for a tensor of rank 2 by an amount P2(cos θ0), where θ0 is
the angle that the dipolar axis or the electric field gradient
symmetry axis makes with the molecular symmetry axis.
These important and dramatic geometrical effects on the T 1/ρ
values for the D spins in CD3H, CD2H2, CDH3, and CD4
have been observed.26 Such geometrical effects arising from
averaging of the interaction during the free rotation between
collisions in the gas phase do not apply to the spin–rotation
mechanism, as mentioned above, so the proton relaxations in
these systems have only the very small differences associated
with the variation of j (j + 1) with rotational constants.

In the language of correlation functions, Bloom et al.26

emphasized the physical origin of this factor of 1
4 by writing

the correlation time as f 2τ 2, where f 2 has a different numerical
value for molecules of different geometry or for different
nuclear sites in the same molecule. In the language of
correlation functions,

τθ,2 =
∫ ∞

0
g(t) dt, where g(t) = [g(t)]free rot[g(t)]coll (26)

τ2 =
∫ ∞

0
[g(t)]coll dt, f2 =

∫ ∞

0
[g(t)]free rot dt (27)

where the oscillatory nature of the correlation function for the
free rotation between collisions gives rise to the factor f 2 = 1

4
for linear molecules and 1

5 for tetrahedral spherical tops. For a
given collision pair, for example, CH3D–Ar, the geometrical
effects on 1H or D relaxation are different; nevertheless, the
cross section σθ,2, which is a property of the CH3D molecule
with Ar, should be the same whether derived from 1H or D
spin relaxation.

4.2 Analysis of T1 Measurements

A review of T 1 studies in the gas phase by Armstrong45

provides some interesting examples in the region of the
T 1 minimum. The effects of centrifugal distortion can be
incorporated into the T 1 expression, as was found to be
necessary in the interpretation of the low-density data for
proton relaxation in CH4 and SiH4. In the region of the T 1
minimum, the assumption of a single relaxation time for all
rotational levels (SRTA) gives a poorer fit to experimental
data than multiple relaxation times (MRTA). In some cases,
it is found that a distribution of correlation times τ J leads to
a better fit to the data and to a more accurate spin–rotation
tensor from the T 1 minimum. Beyond the T 1 minimum, T 1/ρ
should be a constant independent of ρ for a given temperature.
However, in some cases, dimers formed by van der Waals
interactions can result in contributions to the relaxation by
the rotational states of the observed molecule, as was found in
H2 –Ar.39 This leads to a maximum in the T 1/ρ versus ρ curve,
which can be fitted theoretically by considering the dynamics
of formation and annihilation of the dimers.

Separate relaxation of nuclei in magnetically inequivalent
sites has been measured in SF4 and in NNO. The former was
carried out in the region of the T 1 minimum. The different
relaxation rates are characteristic of the different paramagnetic
shieldings at the two sites, which have known relationships
to the respective spin–rotation tensors.46 When measurements
are made beyond the T 1 minimum in two or more nuclear sites
in the molecule, the same σ J and σθ,2 cross sections (which
are characteristic of the molecule and independent of which
nucleus is observed) should result from the analysis. This was
the case for NNO. Similarly, both 1H and 13C provide the
same σ J cross section for CH4. Relaxation information for
more than one nuclear site in the same molecule provides
redundancy of information. Cross sections obtained from
different isotopomers have different kinematic factors and
should be slightly different; scattering calculations have to be
carried out for each isotopomer.
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In a mixture of two gases, the analysis provides cross
sections for the unlike pair of molecules if the pure gas
experiment has been done, since the relaxation times in the
extreme narrowing limit due to two types of collision partners
are additive:42

T1(A) = (T1/ρ)A-AρA + (T1/ρ)A-BρB (28)

The characteristic (T 1/ρ)A–B provides σ J(A–B) or σθ,2(A–B).

4.3 Spin–Rotation Relaxation

In most molecules, the nuclear spin angular momentum of
the 19F nucleus is coupled to the molecular rotational angular
momentum by a rather large spin–rotation constant, so that
the 19F nuclear spin is relaxed predominantly by the rotational
magnetic fields. In the extreme narrowing regime, in the gas
phase,

(
ρ

T1

)
lin.sr

= 2

3

(ωsr)
2

L0〈v〉σJ

〈 j (j + 1)〉 (29)

where

(ωsr)
2 = C2

eff = [ 1
3 (C|| + 2C⊥)]2 + 4

45 (C|| − C⊥)2 (30)

involving the spin–rotation tensor components, and 〈j (j + 1)〉
= 3I 0/kBT for spherical tops such as CF4, SiF4, SF6, SeF6,
and TeF6, whereas for a linear molecule, C2

eff = C2
⊥ and 〈j (j

+ 1)〉 = 2I 0/kBT . The assumptions that allow the above T 1
equation to be used are that
1. the Larmor frequency is small compared with the collision

frequency;
2. the duration of a collision is short compared with the

average time between collisions;
3. the interactions among the collision partners do not

significantly influence their collisions with the observed
molecule;

4. bound states between the observed molecule and the
collision partner have no significant effect on the spin
relaxation.

Independent knowledge of the spin–rotation tensors from
molecular beam electric or magnetic resonance or high-
resolution microwave spectroscopy leads to σ J(T ) directly
from measurements of T 1. The temperature dependence of
these cross sections appears to be described well enough by a
power law:

σJ (T ) = σJ (300 K)(T /300 K)−m (31)

These cross sections have been measured in NNO, CO2, CO,
N2, CF4, CH4, SF6, SeF6, and TeF6 molecules in collisions
with self, Ar, Kr, Xe, N2, CO, CO2, HCl, CH4, CF4, and
SF6 molecules. Cross sections ranged from 0.09 nm2 for SF6
in CH4 to 1.29 nm2 for TeF6 in pure TeF6 at 300 K. The
temperature exponent ranged from m = 0.44 for 13CO in
SF6 to 1.62 for TeF6 in SF6, not uniformly m = 1 as was
originally expected. Two σ J(T ) sets for one interacting pair
help to test the anisotropy of one interaction potential, offering
the possibility of probing different parts of the potential
surface; for example, σ J(T ) of 13CO in N2 –CO provides the
anisotropy around CO, primarily dV /dθ1, where θ1 is the
angle that the CO molecule makes with the line connecting the

centers of mass of the two molecules, and σ J(T ) of 15N2 in
N2 –CO provides the anisotropy around N2, primarily dV /dθ2,
where θ2 is the angle that the N2 molecule makes with the
intermolecular axis. A summary of σ J cross sections and
exponents m has been published.1

Each cross section is determined uniquely by the nature of
interaction of the collision pair. As we have seen, the theoret-
ical formalism provides the means, given the potential energy
surface (PES), to calculate directly, via quantum scattering
or classical trajectory methods, the observed cross sections.
Nevertheless, there are interesting general observations that
an examination of these cross sections reveals.47

1. Collision efficiencies can be defined in terms of the collision
cross section divided by a geometric cross section, to take
into account the relative sizes of the molecules. We have
been using (σ J/πd12

2), where d12 is taken from the distance
scaling parameter in the conformal isotropic potential
functions, the value of r at which V = 0. In comparing
across the various observed molecules, it appears that the
most important factor determining the absolute magnitude
of the observed efficiencies of angular momentum change in
the target molecule 1 by collision partner 2 is the anisotropy
of the electronic distribution of the target molecule. For any
given collision partner, the largest efficiencies are observed
for the NNO molecule, followed by CO2 and CO. To an
approaching projectile, the anisotropy of the NNO molecule
appears the greatest, followed by CO2 and CO, in that
order. The shape of the projectile molecule appears to be of
secondary importance. Having corrected for the geometric
sizes, projectiles Ar and HCl are observed to have about
the same effect as do CF4 and Xe on a nearly isotropic
target such as SF6.

2. The collision cross section for any given observed molecule
increases with increasing mass (and number of electrons)
of the collision partner—not unexpectedly, because of the
geometric sizes. Having been corrected for the geometric
sizes, the collision efficiencies also increase with increasing
mass and number of electrons of the collision partner. Part
of this has to do with the kinematic factors, which can
be modeled by classical collisions between hard bodies, as
in Chandler’s perfectly rough hard spheres model.48 The
collision efficiency involves a kinematic factor containing
only reduced masses and moments of inertia of the form

{
I0(1)

µ12d
2
11

+ 1

2

[
1 + I0(1)d2

22

I0(2)d2
11

]}−1

(32)

which applies to linear or spherical top target molecules
and molecular collision partners (not rare gas atoms). The
other part can be attributed to attractive forces increasing
roughly with increasing number of electrons of the partner.

3. The observed collision efficiencies of the CH4 molecule are
nearly the same for nearly all partners, with the small mass
of CH4 having a leveling effect, making the reduced mass
of the collision pair nearly the same for all partners.

4. Electrical moments of the collision partner enhance col-
lision efficiencies by introducing sizable angle-dependent
terms in the intermolecular potential. Thus, collision effi-
ciencies involving HCl as a partner are higher than might
be expected for its number of electrons; so do those involv-
ing CO2 and NNO, which have large electric quadrupole
moments.

5. Despite the similarities of kinematic factors for NNO with
CO2 or CO with N2, there are clear differences in their
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Table 3 Thermal Average Cross Sections for Molecular Reorientation, σθ,2 (300 K)51

σθ,2 (nm2) σθ,2/σj

Collision partner 14N2
14NNO CD4 N2 NNO CD4

CH4 or CD4 0.31 0.452 0.391 2.2 1.67 2.1
N2 0.293 0.430 0.390 2.0 1.46 2.4
CO 0.32 0.470 0.381 2.1 1.42 2.4
Ar 0.32 0.474 0.354 2.1 1.26 2.5
Kr 0.41 0.656 0.459 2.3 1.18 2.5

HCl 0.36 0.634 0.536 2.0 1.22 2.3
Xe 0.44 0.762 0.520 2.2 1.18 2.3

CO2 0.59 0.754 0.599 2.0 1.26 2.5
NNO 0.755 1.27
CF4 0.59 0.798 0.614 2.0 1.11 2.5
SF6 0.73 0.994 0.779 1.9 0.96 2.3

cross sections that cannot be accounted for by the very
small electric dipole moments in NNO and CO. This is an
indication of the sensitivity of the σ J cross sections to the
details of the anisotropy of the intermolecular potential.

6. There is a rough correlation between the magnitude of
the temperature exponent of σ J(T ) and the well depth ε12
for the collision pair. This is consistent with Chandler’s
model,49 in which the collision efficiencies are multiplied
by an exponential factor exp (ε12/kBT ) to include the effects
of attractive forces.

4.4 Quadrupolar Relaxation

The 14N nucleus in 14N2 and the end 14N nucleus in 14N14NO
relax entirely by the quadrupolar mechanism, which allows us
to characterize quadrupolar relaxation cross sections in the gas
phase.50,51 On the other hand, the much smaller electric field
gradient for the middle nitrogen in NNO leads to a competing
spin–rotation and quadrupolar mechanism for this nucleus.
Nevertheless, σθ,2(T ) for the 14N14NO molecule [and also
σ J(T )] should be independent of whether the end or the middle
nitrogen is used to determine the cross section. Similarly, the
D relaxation in CD4 is a combination of spin–rotation and
quadrupolar. Whenever more than one mechanism makes a
significant contribution to the relaxation, the separation of the
two leads to greater errors in the cross sections.

It has been demonstrated by McCourt and co-workers
that σ J(T ) and σθ,2(T ) are sensitive to different parts of
the anisotropic potential, thus providing independent tests.
Classical trajectory calculations for σ J(T ) and σθ,2(T ) in the
N2 –Ar system have provided agreement with the experimental
values, upon refining the PES.41 σθ,2(T ) is found to be most
sensitive to variations in the anisotropy of rmin of the PES, and
σ J(T ) is found to be fairly sensitive to variations both in the
anisotropy of rmin and the angular dependence of the repulsive
wall of the PES.

A summary of the results of quadrupolar relaxation in gases
is given in Tables 3 and 4. A very interesting result is that for
14N2 and 15N2, the ratio σθ,2/σ J is very close to 2.0, with
10 different collision partners (ranging from 1.9 to 2.3, with
an average of 2.1) and mJ ranges from 0.6 to 1.0, with an
average of 0.74 while mθ,2 ranges from 0.62 to 0.91, with
an average of 0.71. On the other hand, the ratio σθ,2/σ J for
NNO is somewhat more variable, ranging from 0.96 to 1.67,

with an average of 1.27, mJ ranges from 0.47 to 1.29, with an
average of 0.88, and mθ,2 ranges from 0.66 to 0.95 with an
average of 0.80. The relaxation of D in CD4 and H in CH4 can
also be compared for 10 different collision partners, resulting
in σθ,2/σ J ranging from 2.1 to 2.5 (average 2.4), mJ ranging
from 0.79 to 1.06 (average 0.88), and mθ,2 ranging from 0.56
to 0.75 (average 0.64).51 Of course, the kinematic factors are
slightly different for the different isotopomers, and we have
already seen that kinematic factors such as moments of inertia
and reduced masses play a role. In these examples, classical
trajectory calculations will have to be carried out for both
isotopomers in order to obtain an accurate σθ,2/σ J ratio for
each isotopomer. Other examples are σθ,2/σ J = 1.38 in pure
ClF gas at 295 K52 and σθ,2/σ J = 1.6 in pure D2 at 293 K,
increasing to very nearly 2.0 at 171 K,53 and for CF4 in the
pure gas, the ratio is very close to 4.0, with σθ,2 obtained
from depolarized light scattering. In general, σθ,2/σ J > 1.0
has been found experimentally. Results of classical trajectory
calculations with a variety of PES are generally consistent
with σθ,2/σ J > 1.0. In general, mJ > mθ,2 has been found
experimentally. The greater temperature dependence of σ J
compared with σθ,2 is consistent with the finding by McCourt
et al. that σ J is fairly sensitive to variations in the angular
dependence of the repulsive wall, whereas σθ,2 is not, and the
general observations by Gordon that σ J contains information
mainly about the higher j states, and is determined both by
changes in the magnitude of the rotational angular momentum

Table 4 Temperature Dependence of Collision Cross Sections for
Molecular Reorientation σθ,2(T ) = σθ,2(300 K) (T /300 K)−m

m

Collision partner 14N2
14NNO CD4

CH4 or CD4 0.76 0.79 0.65
N2 0.62 0.77 0.60
CO 0.69 0.82 0.58
Ar 0.71 0.73 0.65
Kr 0.70 0.80 0.67

HCl 0.78 0.95 0.59
Xe 0.63 0.77 0.75

CO2 0.91 0.93 0.71
NNO 0.85
CF4 0.66 0.69 0.66
SF6 0.63 0.66 0.56
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and by changes in its direction, whereas σθ,2 are affected
strongly by reorientation and only to a minor extent by changes
in j .32,41

4.5 Intermolecular Dipole–Dipole Relaxation

In intramolecular relaxation mechanisms such as those dis-
cussed above, the interactions involved in the spin relaxation
are always present within the molecule of interest; colli-
sions interrupt molecular rotation, and thereby introduce the
fluctuations of local magnetic fields or electric field gradi-
ent tensors that lead to nuclear spin relaxation. In an inter-
molecular mechanism, the interaction is ‘on’ only during a
collision. By their nature, the dependence of intermolecular
mechanisms on density, temperature, and magnetic field are
very different from those of intramolecular mechanisms in
the gas phase. It has been shown that it is possible to take
advantage of such differences to separate the intermolecu-
lar mechanisms precisely from the ever-present intramolecular
ones.54 – 56

In the gas phase, nuclear spin relaxation by intermolecular
magnetic dipolar coupling is usually not an important mech-
anism. The exception is when the magnetic dipole on the
collision partner is from an electron spin. The presence of the
electron spin on the collision partner also generates a scalar
intermolecular nuclear spin–electron spin interaction, which is
responsible for the observed contact shifts discussed in Section
2.4. However, it has been shown that in the case of 129Xe, this
scalar mechanism24 accounts for no more than 0.3% of the
observed value of 1/T 1 for 129Xe in O2 gas.57 Under ideal
conditions, the separation of the intermolecular dipolar from
the other dominant mechanism (e.g., spin–rotation) has been
quantitative, permitting the characterization of the intermolec-
ular dipolar mechanism. This was possible for 1H in CH4, 19F
in CF4, SiF4, SF6, SeF6, and TeF6 in oxygen gas.54 – 56 After
the spin–rotation contributions (which are proportional to 1/ρ)
were taken out, the remainder of the relaxation rate was found
to be proportional to the density of oxygen for all temperatures
and all fields. For example, for 19F in mixtures of CF4 in O2,
the relaxation rates ranged from 10% DD/90% SR up to 80%
DD/20% SR.

There is a magnetic field dependence of the intermolec-
ular dipolar relaxation. The duration of a collision, dur-
ing which time the CF4 and O2 molecules are close
enough for the electron spin–nuclear spin dipole inter-
action to cause nuclear spin transition, lasts for only
a tiny fraction (1 part in 104) of the Larmor period
of the 19F nucleus, but a sizable fraction (0.04–0.2) of
the Larmor period of the electron spin at typical fields
1.9–9.4 T. It has been found that a field dependence of the
form

(1/T DD
1 ) = (1/T DD

1 )0[1 − f (T )ω
1/2
I ] (33)

is consistent with the experimental data for 129Xe, 1H in
CH4, 19F in CF4, SiF4, SF6, SeF6, and TeF6 in oxygen
gas,54 – 57 where (1/T 1

DD)0 corresponds to the zero-field limit.
All these results were in the low-frequency limit; that is, the
nuclear spin-bearing molecule suffers several collisions during
one Larmor precession, and the duration of a collision is
a fraction less than one of a Larmor cycle of the electron
spin.

In the extreme narrowing limit, the correlation function
approach26 and the quantum mechanical formulation of
molecular kinetic theory27,33 both lead to

(1/T DD
1 )0 = 16

3 S(S + 1)γ 2
I γ 2

S

�
2

d2

(
πµ

8kBT

)1/2

NS · F (V/kBT ) (34)

where N S is the number density of S -bearing molecules, d
is the characteristic length of the intermolecular interaction,
loosely referred to as the molecular diameter, and (πµ/8kBT )

1
2

is the reciprocal mean relative velocity 〈v〉−1. The dependence
of the intermolecular dipolar relaxation on the intermolecular
PES is contained in F (V /kBT ), which can be viewed as
a measure of collision efficiency; i.e., the intermolecular
dipolar relaxation rate is proportional to an effective collision
frequency, which is a factor F (V /kBT ) times that for hard
spheres of diameter d at the high translational energy limit.
At 300 K, F (V /kBT ) is 2.04, 2.83, 3.16, 2.95, 3.66, and 3.75,
respectively, for CH4, CF4, SiF4, SF6, SeF6, and TeF6 with O2,
and the temperature dependence is as T −0.4. These F (V /kBT )
functions are expected to serve as good tests of potential
energy surfaces involving interaction with the O2 molecule, as
clearly indicated by the failure of a square well approximation
to provide values of the correct order of magnitude.

The experimental results of the field dependence, obtained
empirically without making any assumptions as to the
form— only with the assumption that (1/T 1

DD)0 is field-
independent— show that f (T ) is closely approximated by the
form

f (T ) ≈ 1

24

(
deff

〈v〉
)1/2

[
3 + 7

(
γS

γI

)1/2
]

(35)

This was arrived at by replacing the translational correlation
time (τ trans = d2/D in liquid models) by the analogous
characteristic time in the gas phase (d eff/〈v〉). It appears
that πd eff

2 ≈ πd2·F (V /kBT ) gives a reasonable fit to the
experimental field dependence. At 300 K, the values of f (T )
ranged from 0.0157 to 0.0243 MHz− 1

2 whereas the above
expression leads to values of 0.0155–0.0240 MHz− 1

2 for CH4,
CF4, SiF4, and SF6.
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