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We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems
Xe–CO2, Xe–N2, and Xe–CO using a gauge-invariant ab initio method at the coupled Hartree–
Fock level with gauge-including atomic orbitals �GIAO�. Implementation of a large basis set �240
basis functions� on the Xe gives very small counterpoise corrections which indicates that the basis
set superposition errors in the calculated shielding values are negligible. These are the first
intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and
can be described adequately by a sum of inverse even powers of the distance with explicit angle
dependence in the coefficients expressed by Legendre polynomials P2n(cos �), n�0 – 3, for
Xe–CO2 and Xe–N2. The Xe–CO shielding surface is well described by a similar functional form,
except that Pn(cos �), n�0 – 4 were used. When averaged over the anisotropic potential function
these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance
�NMR� chemical shift observed in gas mixtures. The energies from the self-consistent field �SCF�
calculations were used to construct potential surfaces, using a damped dispersion form. These
potential functions are compared with existing potentials in their predictions of the second virial
coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the
mean-square torque from infrared absorption, and the rotational constants and other average
properties of the van der Waals complexes. Average properties of the van der Waals complexes
were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the
various potentials and compared with experiment. © 1997 American Institute of Physics.
�S0021-9606�97�01835-7�

INTRODUCTION

The largest intermolecular chemical shifts in nuclear
magnetic resonance spectroscopy have been observed for
129Xe nucleus. The observed NMR chemical shifts are the
differences in the magnetic response property, the nuclear
magnetic shielding, in going from one electronic environ-
ment to another. The extremely high sensitivity of the 129Xe
NMR chemical shift to its environment has made the Xe
atom a widely used probe in the characterization of mi-
croporous materials such as clathrates,1,2 zeolites,3–5

polymers,6–8 graphite, coals, and other materials. In zeolites
the 129Xe chemical shift is known empirically to depend on
zeolite pore and channel dimensions,3–5 cation distri-
bution,9,10 dispersed metal atoms,4,5,11,12 and domains of dif-
ferent composition or crystallinity.13 An understanding of the
sensitivity of the chemical shift to these parameters, crucial
to the quantitative application of the empirical observations,
still remains elusive.

While the Xe chemical shifts in heterogeneous porous
solids are dramatically large, we begin our theoretical studies
of Xe shielding by calculating the intermolecular shielding
surfaces for Xe interacting with a single molecule rather than
a liquid medium or a graphite sheet. The most quantitative
comparisons can be made with the gas-phase density coeffi-

cients of the Xe chemical shifts that have been measured in
the mixture of Xe with other gases.14,15 In our earlier calcu-
lations of intermolecular shielding surfaces we have used the
rare gas atoms He, Ne, and Ar to characterize the general
shape of the intermolecular shielding surface for rare gas
pairs. We have shown that the surface is nonmonotonic, is
zero at large separations since the reference is the free atom,
and becomes deshielding as the other atom or molecule is
brought closer to the nucleus in question, goes to a minimum
at a fairly short intermolecular separation and becomes more
shielded in the approach toward the united atom limit.16–18 It
has been shown16 that when the basis sets used �especially
for the atom bearing the nucleus whose shielding is being
calculated� are not saturated, the intermolecular shielding
surface may exhibit a spurious positive shielding hump
which disappears as soon as the basis set superposition errors
are accounted for, for example, by adopting the Boys–
Bernardi counterpoise corrections. Counterpoise corrections
can be as large as a few ppm.19 The 39Ar shielding in Ar–Ne,
the Ne shielding in Ne–Ne and Ne–He17 and the He shield-
ing in the He–He system20 were found to have the same
shape. The latter exhibited a minimum only at the correlated
level of calculation, using multiconfiguration SCF wave
functions in the individual gauge for localized orbitals
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�MC-IGLO� whereas the correlation contributions to the 39Ar
shielding in the Ar–Ar system had been shown by second
order localized orbital/local origin method �SOLO� calcula-
tions to be negligibly small. In all rare gas pairs the mini-
mum in the shielding surface occurs at a distance much
shorter than r0 , the separation at which the potential energy
of interaction goes to zero.

The shapes of the intermolecular shielding surfaces for
rare gas pairs are very similar and the nearly identical R
dependence at separations around or larger than r0 , suggests
that they may be conformal in the same sense that the law of
corresponding states suggests that potential-energy surfaces
are conformal.16 It has been found that the rare gas intermo-
lecular shielding functions do scale according to the factors
�A•�a0

3/r3	A•�B•UAUB /(UA�UB), for the shielding of A
due to the presence of B , where �A is the electric dipole
polarizability of the rare gas atom in question and UA is the
first ionization potential of the atom. The characteristic
�a0

3/r3	 of the free atom in its ground state is the factor for
the intrinsic shielding sensitivity,21,22 and, to the extent that
the shielding response is effected by the mutual distortion of
the electron charge distribution of each atom in the presence
of the other atom, the magnitude of the response could be
related to the usual quantities that appear in the London
model for dispersion energy. The scaled 39Ar in Ar–Ar
shielding function produced curves that were nearly super-
posable in the range of distances of interest with the ab initio
shielding functions of other rare gas pairs.16 The 39Ar shield-
ing in Ar–Ar, scaled to the 129Xe shielding in Xe–Ar, Xe–
Kr, and Xe–Xe gives second virial coefficients of the 129Xe
shielding in rare gas mixtures which are in excellent agree-
ment with experiment in sign, magnitude, and temperature
dependence.16 We have recently found that the ab initio
shielding surface for Xe–Xe itself agrees quite well with the
scaled Ar–Ar shielding surface over the range of distances
that are important in the averaging over the Xe2 potential
surface.23

In this paper we report ab initio calculations of intermo-
lecular shielding surfaces of Xe interacting with linear mol-
ecules CO2, N2, and CO. We examine the sensitivity of the
129Xe shielding to the configuration of the supermolecule. In
the process of doing the shielding calculations, we obtain
VSCF(R ,�) with which we construct a potential-energy sur-
face for the system. Finally, we average the intermolecular
shielding over all configurations to obtain the temperature-
dependent density coefficients of the 129Xe NMR chemical
shift and compare with the values that have been measured
in gas-phase mixtures of Xe with these gases.24,25

METHODS

The 129Xe intermolecular shielding surfaces for
Xe–CO2, Xe–N2, and Xe–CO

In our previous work we have used the calculated shield-
ing surface of the 39Ar nucleus in systems in which Ar atom
is interacting with another atom, ion, or molecule,16–20 or
even a fragment of a zeolite cage,19 as a model for the shield-
ing surface of the 129Xe nucleus in a Xe atom in similar

environments, converting the 39Ar nuclear shielding to 129Xe
shielding by using scaling factors, as described above. In this
paper, we report the 129Xe intermolecular shielding surfaces
for Xe in the systems Xe–CO2, Xe–N2, and Xe–CO carried
out using the coupled Hartree–Fock method using gauge-
including atomic orbitals �GIAO�.26 This is one of the four
well established methods for shielding calculations using dis-
tributed origins. Other methods, localized orbital/local origin
�LORG�, individual gauge for localized orbitals �IGLO�, and
individual gauges for atoms in molecules �IGAIM� provide
comparable results at the same basis set level.27–31 Density
functional methods using either IGLO or GIAO schemes
have also been very successful.32 The basis set on the Xe
atom has to be large enough to accurately depict the response
of the shielding tensor of the Xe nucleus to the linear mol-
ecule at various orientations and intermolecular separations.
For this purpose we have used 240 basis functions on the Xe,
uncontracted 29s 21p17d9 f . The core (25s18p13d) was
taken from Partridge and Faegri;33 this was augmented by
3s , 2p , 4d , and 9 f orbitals with exponents taken from D.
Bishop,34 who had used these functions in shielding calcula-
tions of Xe atom in the presence of a uniform electric field.
The basis set used for C and O are 11s7p3d contracted to
7s/6p/3d . For N atom we used the 11s , 7p Huzinaga basis35

in the contraction �5,6�1;2,5�1� augmented by two sets of
d functions. In the calculation of the shielding surfaces of a
rare gas atom in response to an aluminosilicate �zeolite�
cage, the monomer �free Ar atom� shieldings to be used were
calculated in the full supersystem �Ar plus zeolite fragment�
basis. This is the so-called full counterpoise method. In these
systems the basis set superposition errors BSSE in the 39Ar
shieldings is a function of position of the Ar with respect to
the fragment and is of the order of a few ppm.19 In contrast,
the basis set used here for the Xe atom is large enough that
the counterpoise correction to the 129Xe shielding function
was found to be negligible in every case, of the order of
�0.03 ppm where the intermolecular shielding is �63.35
ppm �0.05%�, and �0.0006 ppm where the intermolecular
shielding is �5.0804 ppm �0.01%� for 129Xe in Xe–CO, for
example.

The ab initio values calculated at 70 (R ,�) points each
for the 129Xe intermolecular shielding in Xe–CO2 and
Xe–N2 were fitted to the following functional form:


��R ,�������
� �
p�6,even

12

R�p �
��0,even

6

ap�P��cos ��,

�1�

where P� is a Legendre polynomial. The ab initio values at
130 �R ,�� points for 129Xe intermolecular shielding in
Xe–CO were fitted to the following function:


��R ,�������
� �
p�6,even

12

R�p �
��0

4

ap�P��cos ��. �2�

We use only even inverse powers of R even for this unsym-
metrical case since the nucleus of interest resides in a mol-
ecule that has spherical symmetry.
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An essential constraint that must be imposed on the fit-
ting function is that the long-range behavior of the intermo-
lecular shielding be correct. The ab initio points remain
negative as r approaches large distances, up to 6 Å. The
fitting was therefore constrained to keep the values of the
function less than zero at 12 points: at 4, 5, 6, and 7 Å, at
��0°, 45°, and 90°. If the fitting is allowed to be uncon-
strained at long range, the fitted function will have the wrong
long-range behavior �a very low broad positive hump which
integrates over the attractive part of the potential surface�
and gives spurious positive contributions to �1(Xe–CO2).

We also considered fitting the shielding function to a
sum of pairwise atom–atom radial only terms, such as


��R1 ,R2 ,R3 ,••• ������


��
i

�a6iRi
�6�a8iRi

�8�a10iRi
�10�a12iRi

�12�•••� ,

�3�

where Ri is the distance between Xe and the ith atom in the
linear molecule. This functional form has been used to de-
scribe the shielding function for a rare gas atom interacting
with a zeolite fragment, in which i runs over as many as 52
atoms.19 For these fitting functions, the behavior at large Ri

is constrained so that each pairwise atom–atom function has
the same behavior at very large separations as the total
shielding itself, that is, 
��R1 ,R2 ,R3 ,•••������
 is mono-
tonically negative at large distances.

The potential-energy surface (PES)

The individual contributions to the intermolecular poten-
tial can be calculated by various ab initio methods and then
the calculated points are fitted to a parametrized functional
form. It is useful to construct the potential-energy surface
using the usual sum of contributions

V�Vshort�Velec�V ind�Vdisp. �4�

It is common practice to associate VSCF, the interaction en-
ergy evaluated from a SCF supermolecule calculation, with
Vshort�Velec�V ind so that

V�VSCF�Vdisp. �5�

This neglects any dependence of the intramolecular correla-
tion energy on the intermolecular coordinates, as well as
various cross terms; it thus neglects the effects of intramo-
lecular correlation on the repulsive potential and on the elec-
trostatic and induction potentials. In the process of calculat-
ing the nuclear magnetic shielding of Xe at various
interaction geometries with a linear molecule, we have ob-
tained VSCF(R ,�) as a by-product. Thus, we can construct a
potential-energy surface for the system at the same time as
the construction of the 129Xe intermolecular shielding sur-
face.

We adopt the Tang and Toennies method of constructing
the intermolecular potential, that is, by adding a damped dis-
persion contribution to the VSCF(R ,�). Just as important as
the ab initio calculations at selected (R ,�) points in the con-

figuration of the supermolecule, is the description of the sur-
face in terms of a functional form. To describe Vshort, we
follow the suggestion by Buckingham, Fowler, and Hutson36

and expand the reference distance and the exponent rather
than Vshort(R ,�) itself in terms of angular functions. Thus, in
the Xe–CO2 case, the short range part of the potential itself
is expanded as

Vshort�R ,���A� exp�������R�R ref�����, �6�

where

R ref�����
�

R ref,�P��cos ��, �7�

������
�

��P��cos ��. �8�

We thus fit �VSCF(R ,�)�V ind(R ,�)� to this functional form
to determine the parameters A�, R ref,� and �� , ��0,2,4,6,8.
VSCF(R ,�) is found from the Xe�CO2 supermolecule ab ini-
tio calculations using GAUSSIAN 9436�a� �see below for coun-
terpoise corrections�, and V ind(R ,�) is taken from the theo-
retical expression appropriate for an atom and a linear
molecule, given by Hettema et al.37 with the electric mo-
ments of the linear molecule being taken from experiment or
from ab initio calculations. V ind(R ,�) is added back to the
function obtained by fitting Eq. �6�.

The dispersion contribution at long range is of the form

Vdisp�R ,��� �
n�6

�CnR�n, �9�

Cn��
�

Cn
���P��cos ��. �10�

For Xe–CO2 we have used ��0,2,4,6,8 and n�6,8,10,12
with the dispersion coefficients Cn

(�) taken from T Pack.38

At short range this behavior is modified using damping func-
tions

Vdisp�R ,��� �
n�6

�CnR�nDn�R �, �11�

where Dn(R) are the damping functions which are implicitly
functions of orientation. We adopt the Tang–Toennies in-
complete � function39

Dn�R ��1�exp���R �• �
m�0

n

���R �m/m!� , �12�

and � is set equal to the exponent used in the repulsive
potential. The values of the coefficients used in this work and
the parameters obtained from the fitting are given in Table I
for the Xe–CO2 system.

The problem of basis set superposition errors �BSSE� is
of great importance not just in calculating interaction ener-
gies but also molecular electronic properties. The problem of
BSSE, an explanation of its origin, and the methods of cir-
cumventing it have been reviewed.40,41 BSSE in intermolecu-
lar shielding calculations is important since polarization
functions and functions with diffuse exponents which are
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employed in shielding calculations are readily used by all
monomers in the complex and yield BSSE of the same order
of magnitude as the interaction energy itself. Each subsystem
�monomer� is calculated in the complete basis of the super-
system. In this work, the counterpoise correction,42 the dif-
ference between an all-electron calculation on the Xe–CO2

supermolecule and the sum of the Xe calculation in the pres-
ence of the CO2 orbitals and the CO2 calculation in the pres-
ence of the Xe orbitals, was not actually evaluated at every
point in the Xe–CO2 configuration space in which the SCF
energies �and shielding functions� were calculated. Instead,
the counterpoise correction was evaluated at a few selected
geometries and the counterpoise correction to the SCF en-
ergy was fitted to the functional form a•�exp(�br1)
�exp(�br2)� where r1 and r2 are the distances of the Xe
from the two oxygen atoms of CO2, and a and b are fitting
parameters. It is the fitted function that is used to correct
every point. For Xe–CO2 the counterpoise corrections to the
SCF energy were 36–60 microhartree in the range 3.4–4.4
Å, with only 0.5–1.0 �hartree coming from the inadequacies
of the Xe basis set.

The Xe–N2 potential-energy surface was constructed in
a similar fashion, using the same functional forms as for
Xe–CO2. For this system, the dispersion coefficients and the
terms in the induction energy have been calculated by
Hettema et al.37 We have used the values appropriate to the
equilibrium geometry of N2 which was assumed to be rigid
in our ab initio calculations. The values of the coefficients

used for Xe–N2 and the parameters obtained from the fitting
are given in Table II. For Xe–N2 the counterpoise correc-
tions to the SCF energy were larger, 90–160 �hartree in the
range 3.4–4.4 Å, with only 0.4–1.2 �hartree coming from
the inadequacies of the Xe basis set.

The Xe–CO potential-energy surface used the dispersion
coefficients and the terms in the induction energy from
Hettema et al.37 After counterpoise corrections, �VSCF(R ,�)
�V ind(R ,�)� was fitted to Eq. �6�–�8� with ��0,1,2,3,4 to
describe the repulsive potential. For Xe–CO we have used

V ind�R ,����C6
�0 �ind�C6

�2 �indP2�cos ���R�6

��C7
�1 �indP1�cos ���C7

�3 �indP3�cos ���R�7

��C8
�0 �ind�C8

�2 �indP2�cos ��

�C8
�4 �indP4�cos ���R�8, �13�

where the Cn
(�)ind are taken from Hettema et al.37 The

Vdisp(R ,�) for Xe–CO is as in Eq. �10�–�12� with terms in
��0,1,2,3,4 and n�6,7,8, with the dispersion parameters
taken from Hettema et al. and the ���� in the damping func-
tion is set equal to the exponent found in the fitting of the
repulsive potential. The values of the coefficients used for
Xe–CO and the parameters obtained from the fitting are
given in Table III. The counterpoise corrections to the SCF
energy were 29–51 �hartree in the range 3.4–4.4 Å, with
only 0.4–1.0 �hartree coming from the inadequacies of the
Xe basis set.

TABLE I. Electric moments, dispersion coefficients, and fitting parameters for Xe–CO2 molecular complex.a

� 0 2 4 6 8 Ref.

R ref,� , Å 2.31022 0.679 603 �0.012 024 0 �0.003 797 0.009 035 6 this work
�� , Å�1 3.11732 0.032 4677 0.158 266 �0.050 456 3 0.035 134 9 this work
A� 0.398 623 this work
C6

(�) , a.u. 282. 65. 38
C8

(�) , a.u. 6910. 5300. 1000. 38
�1(Xe), a.u. 28.223 72
�2(Xe), a.u. 223.29 72
Q2(CO2), a.u. �3.76 38
Q4(CO2), a.u. �0.06 38

aUnits: a.u.�ea0
2 for Q2 �electric quadrupole moment�, a.u.�ea0

4 for Q4 �electric hexadecapole moment�,
a.u.�e2a0

2Eh
�1 for �1 �static dipole polarizability�, a.u.�e2a0

4Eh
�1 for �2 �static quadrupole polarizability�,

a.u.�a0
nEh for Cn

(�) �dispersion coefficients�.

TABLE II. Electric moments, dispersion coefficients, and fitting parameters for Xe–N2 molecular complex.a

� 0 2 4 6 8 Ref.

R ref,� , Å 1.427 49 0.306 507 0.025 400 5 �0.011 233 8 0.013 324 2 this work
�� , Å�1 3.106 47 0.028 258 7 0.027 781 7 �0.009 226 0.01978 this work
A� 3.770 51 this work
C6

(�) , a.u. 139.5 12.39 37
C8

(�) , a.u. 5451.6 3029.7 �95.43 37
C10

(�) , a.u. 229 260. 176 685. 14 243. �990.20 37
�1(Xe), a.u. 28.223 72
�2(Xe), a.u. 223.29 72
Q2(N2), a.u. �1.09 92
Q4(N2), a.u. �8.0 93

aAtomic units given in Table I.

4256 A. C. de Dios and C. J. Jameson: 129Xe nuclear shielding surfaces

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997

Downloaded 15 Feb 2010 to 131.193.142.27. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



The average properties of the Xe-linear molecule
complex

Among the techniques that may be applied to the vibra-
tional dynamics of a weakly bound complex is quantum dif-
fusion Monte Carlo �QDMC�. Anderson gave the first mod-
ern algorithm for simulating the Schrödinger equation as if it
were a diffusion process.43,44 With this we obtain the average
rotational constants in the ground vibrational state. Consis-
tent with the rigid geometry assumed for the linear molecule
in the calculation of the intermolecular potential energy, we
take the molecule to be rigid, as has been done by Buch and
others.45–47 The simulation consists of a number of copies of
the system. Each copy is allowed to diffuse via a random
walk process and to multiply or disappear with a probability
determined by its potential energy. This process is repeated
until the distribution of replicas approaches a fluctuating
steady state from which the ground-state energy is evaluated.
After equilibration, the simulation yields a collection of rep-
licas of the system that have the statistical distribution which
approaches the ground-state wave function of the system.
Buch has implemented QDMC for two or more interacting
molecules, each taken to be rigid, which we adopt here with
no changes.45 This treatment relies on the approximation that
the high-frequency intramolecular vibrations are effectively
decoupled from the lower-frequency intermolecular motions
because these two types of motions occur at very different
time scales. By eliminating the high-frequency motions the
number of variables is decreased and larger time steps may
be taken. Our simulations consisted of an equilibration phase
lasting 600 time steps before the data collection phase. The
number of replicas in all calculations was 5000. In each
QDMC run the first 600 steps were carried out with time step
of 150–200 a.u. after which the time step was decreased to
30 a.u. It is important that the first steps on the simulation are
done with long enough time steps to probe a large region of
the PES. Rotational constants and all other properties aver-
aged over the zero-point motion were calculated by the
method of descendant weighting which provides the means
of obtaining expectation values from the distribution gener-
ated by QDMC.48,49 The descendant weighting procedure

used to obtain the averages was adopted from Ref. 50. The
averaging was performed for 12 generations of replicas si-
multaneously at a delay of 100 steps between the consecutive
generations. The descendants were collected after a delay of
500 steps for 1000 steps. The ground-state energy is obtained
from the requirement of stability of the asymptotic average
number of replicas. For a given potential-energy surface of
CO2–Xe, from the QDMC simulations we obtain the aver-
age rotational constants A , B , C for the ground vibrational
state, the ground-state zero-point energy �and thus the disso-
ciation energy D0�. These average quantities will be com-
pared with the experimental values.

In the case of Xe–CO2, the force constants for the van
der Waals bend and stretch have been determined from the
spectra.51 These can be compared with the analytic second
derivatives of the intermolecular potential. Furthermore, the
stretching and bending frequencies of the van der Waals
complex can be estimated using the GF matrix method of
Wilson52 considering both the inter- and the intramolecular
interactions �force fields� simultaneously. The original mo-
lecular geometry of the linear molecule is employed in the
calculation, any molecular distortion due to the intermolecu-
lar interaction within the complex is ignored. This is the total
force field-unrelaxed molecule approach of Li and
Bernstein.53 The GF matrix diagonalization is an effective
method for determination of the harmonic normal modes of
van der Waals complexes. The intramolecular force field of
the linear molecule was based on the spectroscopy of the
isolated linear molecule. The intermolecular force field is
directly calculated from derivatives of the intermolecular po-
tential energy surface.

Second virial coefficients

There are three virial coefficients that we can use for
testing the calculations on Xe–CO2. The pressure second
virial coefficient, the second virial coefficient of the nuclear
shielding, and the density coefficient of the mean-square
torque from infrared absorption, �C2	/� . All three involve an
integration of an angle-dependent function over the aniso-

TABLE III. Electric moments, dispersion coefficients, and fitting parameters for Xe–CO molecular complex.a

� 0 1 2 3 4 Ref.

R ref,� , Å 1.379 43 �0.036 677 3 0.296 788 �0.059 262 8 0.088 768 9 this work
�� , Å�1 3.085 47 0.217 892 �0.039 780 6 �0.025 562 5 0.146 271 this work
A� 4.153 40 this work
C6

(�) , a.u. 158.06 17.23 37
C7

(�) , a.u. �460.64 15.29 37
C8

(�) , a.u. 6475.4 4300. �193.6 37
�1�Xe�, a.u. 28.223 72
�2�Xe�, a.u. 223.29 72
Q1�CO�, a.u. 0.048 94
Q2�CO�, a.u. �1.5 95
Q3�CO�, a.u. 3.879 37

aUnits: a.u.�ea0 for Q1 �electric dipole moment�, a.u.�ea0
2 for Q2 �electric quadrupole moment�, a.u.�ea0

3 for
Q3 �electric octopole moment�, a.u.�e2a0

2Eh
�1 for �1 �static dipole polarizability�, a.u.�e2a0

4Eh
�1 for �2

�static quadrupole polarizability�, a.u.�a0
nEh for Cn

(�) �dispersion coefficients�.
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tropic potential surface. The pressure second virial coeffi-
cient can be calculated in the conventional way from the
potential-energy surface,

B12�T ��B12
class�T �

�2�N0� � 
1�exp��V�R ,��/kBT�
R2

�sin � d� dR . �14�

The first translational and rotational quantum corrections54,55

are small and were not included. The mixed second virial
coefficient of the nuclear shielding, �1(Xe–CO2), is the
contribution of Xe–CO2 interactions to the shielding
�(T ,�Xe ,�CO2

) of Xe in the gas phase mixture of Xe and
CO2.

��T ,�Xe ,�CO2
����free Xe atom���1�Xe–Xe��Xe

��1�Xe–CO2��CO2
�••• . �15�

This is calculated from the intermolecular shielding surface
by

�1�Xe–CO2��2�N0� � 
��R ,�������


�exp��V�R ,��/kBT�R2 sin � d� dR .

�16�

The mean-square torque �C2	 is related to the second and
fourth spectral moments of the absorption profile of an IR
absorption band and the rotational constant B ,56

�C2	��M �4 ��2M 2�2 ��/4B2. �17�

In the binary collision limit, Armstrong et al.57 have written
�C2	 in terms of an integral over the angular derivative of
the interaction potential, V(R ,�)

�C2	/�Xe�2�N0� � ��V�R ,��/���2

�exp��V�R ,��/kBT�R2 sin � d� dR , �18�

where �Xe is the number density of the perturbing gas in the
CO2–Xe system in which the CO2 IR bands are observed.
These three density coefficients are sensitive to the potential
surface in different ways and therefore provide complemen-
tary experimental information about the potential-energy sur-
face.

RESULTS

The Xe–CO2 system

The intermolecular shielding values and the fitted func-
tion of the form given in Eq. �1� for 129Xe in Xe–CO2 are
shown in Fig. 1. The trace for R(Xe-c.m.)�3.0 Å has a
spurious behavior at angles ��40° and ��140° where no ab
initio calculations were carried out. The function of the form
given in Eq. �1� gives a reasonably good description of the
ab initio values of intermolecular shielding. The root mean-
square deviation of this fit was 1.37 ppm. We have also

attempted to describe the intermolecular shielding surface for
Xe in this system by using a sum of pairwise additive atom–
atom radial functions, �a site–site type of shielding function�
as in Eq. �3�. The fit is shown in Fig. 2, which may be
compared to Fig. 1. Even at large distances, the fit to a func-
tion with an explicit angle dependence is superior to the sum

FIG. 1. The 129Xe intermolecular shielding surface from ab initio calcula-
tions in Xe–CO2 and the fitted function of the form given in Eq. �1�.

4258 A. C. de Dios and C. J. Jameson: 129Xe nuclear shielding surfaces

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997

Downloaded 15 Feb 2010 to 131.193.142.27. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



of pairwise atom–atom terms. We find that the pairwise sum
is inadequate to describe fully the intermolecular shielding
surface at short distances where the anisotropy is very pro-
nounced, as in these Xe-linear molecule cases. This is analo-
gous to the relatively poorer performance of atom–atom
pairwise potentials in representing the calculated potential

energy of interaction between an atom and a linear molecule
or between two linear molecules. We find that the site–site
fit of the Xe–CO2 shielding surface �standard deviation
�2.58 ppm� gives a somewhat better description of the
shielding values at small angles but does a much poorer job
around ��90°, uniformly overestimating the magnitude of
the deshielding effect at this geometry. Since the minimum
energy structure of the Xe–CO2 system is at ��90°, this is a
serious defect of the site–site functional form. We therefore
have used the fit to Eq. �1� in the rest of this work.

The induction and counterpoise corrections to the ab ini-
tio values of VSCF(R ,�) were carried out and Vshort

��VSCF(R ,�)�V ind(R ,�)� was fitted to Eqs. �6�–�8�. The
potential function for the Xe–CO2 system constructed in this
work, using damped dispersion terms according to Eqs.
�10�–�12�, with dispersion coefficients from Pack38 is shown
in Fig. 3 and its characteristics are summarized in Table IV.
When Fig. 3 is compared to the published potential of Buck
et al.58 shown in Fig. 4, the most obvious difference is the
smaller curvature at the bottom of the Buck potential com-
pared to the one constructed here. Since both ours and the
Buck potential included the same dispersion coefficients
from Pack,38 the smaller curvature at the bottom of the well
for the Buck potential is associated with the Buck functional
form including only up to P2(cos �) in the expansion in the
repulsive part. We also found a smaller curvature in our fit-
ted function when we truncated our angular dependence after
the P2 term. Our ab initio values for Vshort are consistent
with a narrower well region, however. Some of the param-
eters in the Buck potential were obtained from similarity
considerations from the calculated or measured shape of the
other rare gas–CO2 complexes. The parameters R0 and R2 in
the exponent of the repulsive term were determined from the
condition that the minimum configuration occurs in the per-
pendicular approach with a large difference of the minimum
distances Rm(90°)�3.83 Å and Rm(0°)�5.29 Å at well
depths 33.6 and 8.29 meV, respectively.58 The value of one
of these parameters (R2) is critical to whether a pronounced
multiple collision rainbow will be observed, and indeed the
crossed molecular beam experiments formed the basis for the
choice of this parameter in the potential constructed by Buck
et al. The characteristics of this potential are shown in
Table V.

The Billing potential59 also uses the Pack dispersion
coefficients38 in the long-range interaction.

V�VSR�1�h ��hVLR .

The short-range interaction is represented �in the same (R ,�)
coordinates that we have used� by a dumbbell potential of
the form

VSR
0 �C�exp���R1��exp���R2���B exp���R �,

where

R1�R�d cos ��0.5d2 sin2 �/R ,

R2�R�d cos ��0.5d2 sin2 �/R ,

���0��1R��2R2.

FIG. 2. The 129Xe nuclear shielding for Xe–CO2 described by a sum of
pairwise atom–atom contributions �Eq. �3��.
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The parameters B , d , �0 , �1 , �2 , were obtained by fitting
to the electron gas calculations of Dreyfus60 and C is a cor-
rection factor equal to 0.6553. The switching function is

h�R ��1, R� d̄ ,

h�R ��exp��a� d̄/R�1 �2� , R� d̄ ,

where a�a0�a2P2�cos ��.

To find the parameters a0 , a2 , d̄ in the switching function,
Billing used the magnitude and positions of the minima in
the parallel and perpendicular geometry from Buck et al.58

The characteristics of this potential are given in Table V.
The function constructed by Iida, Ohshima, and Endo51

is of the form

V�R ,���C12���R�12�C6���R�6

��9/2�QCO2

2 �Xe�P2�cos ���R�8,

where only terms up to P2(cos �) were used in C2n(�)
� C2n

(0) � C2n
(2)P2(cos �) � •••. C6

(0) was taken from T Pack61

and C6
(2)�C6

(0)(� ����)/(� ��2��) was used. C12(90°) is
obtained from the stretching force constant when the
C6(90°) from above is used, and C12

(2) is obtained from the
bending force constant when the C6

(2) from above is used.
The van der Waals force constants were taken from their
experimental data.51 The characteristics of this potential are
given in Table V.

The various potentials for Xe–CO2 predicted second
pressure virial coefficients which are compared with experi-
mental values of B12(T)62 in Fig. 5. The Buck potential gives
excellent agreement with the pressure second virial coeffi-
cient, reproducing 97% and 95% of the experimental values
at 223 and 273 K,62 whereas our potential function for
Xe–CO2 only finds 81% of the experimental values. The
Billing function predicts 72% and 66% of the experimental
values at 223 and 273 K. The Iida function, which was fitted
to spectroscopic data for the van der Waals complex, gives
even worse results. The Iida function gives 63% of the ex-
perimental pressure second virial coefficients.

The mean-square torque was calculated using Eq. �18�
and the results are shown in Table V. Although there is no
experimental value for the mean-square torque for Xe–CO2

system itself, there are a series of rare gas measurements
with CO2

63 and with NNO.64 For the series Ne, Ar, Kr, Xe,
�C2	/� for NNO at 300 K is, respectively, 390, 760, 1090,
1730 cm�2 amagat�1.64 On the other hand, for the series Ne,
Ar, Kr, �C2	/� for CO2 at 300 K is respectively 300, 690,
925 cm�2 amagat�1.63 Therefore, we would expect that for
CO2–Xe �C2	/� should be about 1500 cm�2 amagat�1. On
the other hand, Bulanin et al.65 have reported mean-square

FIG. 3. The potential-energy surface for Xe–CO2, this work.

TABLE IV. Characteristics of the Xe–CO2, Xe–N2, and Xe–CO potential-
energy surfaces developed in this work.a

Xe–CO2 Xe–N2 Xe–COb,c

�/kB �90°� 390.09 131.25 141.05
Rm �90°� 3.768 4.218 4.186
� �90°� 3.314 3.752 3.718
�/kB �0°� 95.19 97.26 133.32
Rm �0°� 5.319 4.763 4.449
� �0°� 4.827 4.294 4.000
�/kB �180°� 58.60
Rm �180°� 5.308
� �180°� 4.790

aEnergies are in Kelvin and distances are in Å.
b��0° corresponds to CO•••Xe, ��180° to Xe•••CO arrangement.
cGlobal minimum is at R�4.183Å, ��88.7°, �141.12 K.
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torques for CO2–Ar and CO2–Xe, respectively, 2000�1000
and 5000�2000 cm�2 amagat�1, larger than the ones from
Berreby and Dayan, but with much larger uncertainties as
well. We believe that the Berreby and Dayan data are more
reliable. We see that �C2	/� predicted by the various poten-
tials are in the range 2760– 3410 cm�2 amagat�1.

Using our calculated intermolecular shielding function

for Xe–CO2 to calculate the second virial coefficient of the
129Xe intermolecular nuclear shielding as in Eq. �16�, we find
the predictions of the three Xe–CO2 potential functions for
the temperature dependence of this observable. In Fig. 6 the
experimental values of the density coefficients of 129Xe
chemical shifts that we had previously measured in mixtures
of Xe and CO2,

24 are best predicted by the Buck potential,
recovering 83% of the experimental �1(Xe–CO2) value at
300 K. Our potential function and the Billing potential do not
do as well, recovering only 68% of this value. These three
potential functions give reasonably good accounting of the
temperature dependence. However, the Iida potential pre-
dicts the wrong behavior of �1(Xe–CO2) with temperature
although it has 96% of the value at 300 K.

The average rotational constants for the Xe–CO2 van der
Waals complex are obtained from the pulsed nozzle Fourier
transform microwave spectroscopy of the complex,51 or from
IR spectroscopy in the region of the �3 of CO2.

66 In Table V
the QDMC results are compared with the experimental val-
ues. The Buck potential has the proper shape at the global
minimum to reproduce the van der Waals bend and stretch
force constants reported by Iida et al.51 from the pulsed Fou-
rier transform microwave spectroscopy of this complex. On
the other hand, our potential has larger second derivatives at
the minimum and this translates to a greater bend force con-
stant than the experimental one reported by Iida et al. Using
our potential, we find 106% and 146% of the reported
stretching and bending frequencies, whereas using Buck’s
potential, we get 111% and 89%, respectively. We find that
the Billing potential gives the best agreement with the rota-
tional constants and the best average distance. Our potential
gives the next best agreement with rotational constants, fol-
lowed by the Buck potential. The Iida potential gives the
worst rotational constants, although the experimental force
constants had been used to construct this potential.

Overall, the Buck potential appears to be the best prac-
tical potential insofar as the three different second virial co-
efficients are concerned, in addition to giving a very good
agreement with spectroscopic data of the van der Waals
complex. This potential was also found to provide satisfac-
tory agreement with the experimental results in crossed mo-
lecular beam experiments; in particular it accounted for the
large intensity peak in the molecular beam differential en-
ergy loss spectra which has been assigned to a multiple col-
lision rotational rainbow.67

The Xe–N2 system

The intermolecular 129Xe shielding values calculated for
the Xe–N2 system were fitted to Eq. �1�. The ab initio values
and the fitted function are shown in Fig. 7. This angle-
dependent description gives a good description of the calcu-
lated values. The root mean-square deviation of this fit was
0.74 ppm. Fitting to Eq. �3� using a sum of pairwise Xe–N
shielding function leads to a poorer fit than the explicitly
angle-dependent Eq. �1�. The anisotropy of the shielding sur-
face is not as pronounced as in Xe–CO2.

The characteristics of the potential function for the

FIG. 4. The Buck potential surface for Xe–CO2.
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Xe–N2 system constructed in this work, using damped dis-
persion terms according to Eq. �10�–�12�, and dispersion co-
efficients from Hettema et al.37 are summarized in Table IV.
We may compare the potential function for Xe–N2 con-
structed in this work with the potential surface published by
Kistemaker and de Vries68 and with four potential functions
constructed by ter Horst.69 These potentials have various
forms: Kistemaker and de Vries proposed a set of N2-rare
gas surfaces which are sums of site-to-site Morse functions,
with parameters determined by using combining rules.

V�r1 ,r2��A•exp��2��r1�rm���2B•exp�����r1�rm��

�A•exp��2��r2�rm���2B•exp�����r2

�rm�� , �19�

where r1 and r2 are the Xe–N distances; A , B , �, and rm are
parameters found by fitting the spherical part of the above
potential to the spherical Morse potential whose parameters
were obtained by combining rules from N2–N2 and the rare
gas potentials.

Four potentials constructed by ter Horst,69 designated
BTT, TNTA, TNTB, and MNT are based on the Tang and
Toennies model70 in which

V�R ,���V0�R ��V2�R �P2�cos ���V4�R �P4�cos ��.
�20�

The radial contributions are determined from linear combi-
nations of cuts of the surface at 0° and 90°, and only terms
up to P2(cos �) were included

V0�R ��
V�R ,0° ��2V�R ,90° �
/3, �21a�

FIG. 5. The pressure second virial coefficient predicted by various potential
surfaces are compared against the experimental data. The experimental
points at 223 and 273 K are from the measurements of Brewer and the other
‘‘experimental’’ points are based on Brewer’s universal correlating equation
for second virial coefficients using a corresponding states approach. �Ref.
62�.

TABLE V. The PES for Xe–CO2 and predictions of constants derived from spectroscopy.

Observable Expt. Buck Billing Iida Ab initio

ks , mdyne/Å 0.021 460�2�e 0.026 786a 0.028 239a 0.0191�18�e 0.024249a

kb , mdyne•Å 0.012 556�10�e 0.010 00a 0.031 916a 0.0125e 0.026675a

�s , cm�1 33.2e 37.0b 38.0b 31.3b 35.2b

�b , cm�1 32.8e 29.3b 52.4b 32.7b 47.8b

�C2	/�
cm�2/amagat

1500 �est.� 2761d 3411d 904d 3194d

�Rm	 , Å
3.8154f

3.818e 3.8784�24�c 3.8101�11�c 3.8959�12�c 3.8407�14�c

A , MHz 11 880.40�65�e 11 906.7�25�c 11 827.4�22�c 11 899.1�26�c 11 837.2�13�c

B , MHz 1057.7867�31�e 1021.1�12�c 1058.6�6�c 1012.65�68�c 1041.86�75�c

C , MHz 966.8030�30�e 940.1�10�c 971.3�5�c 932.83�57�c 957.24�64�c

D0 , cm�1 238.57�76�c 234.05�30�c 163.87�17�c 231.38�9�c

�/kB �90°�, K 390.g 389.74 398.86 279.33 390.09
Rm �90°�, Å 3.83g 3.818 3.740 3.817 3.768
� �90°�, Å 3.386 3.315 3.402 3.314
�/kB �0°�, K 96.2g 96.20 104.86 127.56 95.19
Rm �0°�, Å 5.29g 5.294 5.184 4.638 5.319
� �0°�, Å 4.811 4.735 4.134 4.827

aFrom analytic derivatives of the potential function at the global minimum.
bHarmonic van der Waals stretching and bending frequencies from diagonalization of the GF matrix using ks

and kb values in this table.
cFrom quantum diffusion Monte Carlo solution of the van der Waals vibrational motion. These are averages
over the ground-state vibrational wave functions.

dFrom integration according to Eq. �18�.
eReference 51.
fReference 66.
gReference 58.
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V2�R ��2
V�R ,0° ��V�R ,90° �
/3. �21b�

Each cut V(R ,�0) is written as a combination of a Born–
Mayer repulsive term and a damped dispersion term

V�R ,�0��A��0�exp�����0�R�

� �
n�3

n max � 1�exp�����0�R�

•�
k�0

2n

����0�R�k/k!� •C2n��0�R�2n, �22�

where n max�8 and,

C2n��0��C2n
�0 ��C2n

�2 �•P2�cos ���•••�C2n
�2n�4 �

•P2n�4�cos ��. �23�

The Born–Mayer parameters for N2–Xe taken from Nyeland
and Toennies71 were used in the BTT, TNTA, TNTB, and
MNT potentials. The differences between these PES lie in
the dispersion terms. TNTA and TNTB use the dispersion
coefficients from Thakkar et al. The TNTB function used
just the same set of dispersion coefficients we have used,
except that ter Horst used C6

(0) and C6
(2) scaled by the con-

strained dipole oscillator strength distribution �DOSD� val-
ues, as recommended by Hettema et al.37 The TNTA surface
used the earlier Thakkar values of dispersion coefficients.72

The MNT surface used estimates of dispersion coefficients
from McCourt,73 which are based on the systematic relations

between N2–rare-gas dispersion coefficients with increasing
rare gas polarizability �these include only up to P2(cos �)
terms�. The BTT surface uses the dispersion coefficients
from Bowers and Tang70 with C12 terms added on. The val-
ues of C12

(0) and C12
(2) were obtained by using the combining

rule,74

FIG. 6. The predicted second virial coefficients of 129Xe nuclear shielding
for Xe–CO2 calculated by averaging the ab initio Xe–CO2 shielding surface
using various potential functions are compared with the experimental data
obtained in the gas phase �Ref. 24�.

FIG. 7. The 129Xe intermolecular shielding surface from ab initio calcula-
tions in Xe–N2 and the fitted function of the form given in Eq. �1�.
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C2n��0��C2n�6��0��C2n�2��0�/C2n�4��0��3. �24�

The TNTA and TNTB potential functions go up to C10

terms. The parameters used in these four potential surfaces
are given in Ref. 69. The characteristics of these surfaces are
summarized in Table VI. It should be noted that our potential
is much more shallow in the global minimum than these
others. In fact the potential constructed here for Xe–N2 is too
shallow �131 K� compared to Ar–N2 �153 K�75 and Kr–N2

�194–251 K�.76,77

The B12(T) predicted by the various potential surfaces
for Xe–N2 are shown in Fig. 8. Our potential function for
Xe–N2 only finds 53% and 42% of the experimental values
of the pressure second virial coefficients at 223 and 273 K.62

The other potential functions do much better. The TNTA
potential surface gives the best agreement with experiment,
the MNT surface giving also reasonably good results. The
BTT surface gives magnitudes much too large while our sur-
faces gives magnitudes much too small.

We see in Fig. 9 that only our potential gives a reason-
able agreement with the experimental temperature depen-
dence of the density coefficients of 129Xe chemical shifts that
we had previously measured in mixtures of Xe and N2,

25

although ter Horst’s various potentials give about the right
magnitude at room temperature. Our potential has the right
behavior with temperature, recovering 72% of the experi-
mental value at 300 K. When this second virial coefficient of
Xe shielding was first reported together with �1(Xe–CO),25

these two virials provided the first instance of a temperature
dependence of �1(Xe–A) which is in the opposite sign com-
pared to all others observed for Xe with various collision
partners. All other systems had the magnitude of the density
coefficient of 129Xe chemical shift decreasing with increasing
temperature. Without a knowledge of the form of the inter-
molecular shielding function, an explanation for the unusual
behavior of Xe in N2 and Xe in CO could not be brought
forward. We find here that the temperature dependence of
�1(Xe–N2) is a very sensitive test of the potential; we find
that potentials constructed from the same set of dispersion

coefficients �TNTB and ours� but with different repulsive
parts do not give the same sign of the temperature depen-
dence.

The shapes of the various surfaces at the global mini-
mum are clearly different from each other. The quantum dif-
fusion Monte Carlo solutions for the vibrational ground state
using these various potential functions provide the average
geometry, the average rotational constants and the dissocia-

FIG. 8. The pressure second virial coefficient predicted by various potential
surfaces and our Xe–N2 PES are compared against the experimental data.
The experimental points at 173, 223, 273, and 323 K are from the measure-
ments of Brewer and the other experimental points are based on Brewer’s
universal correlating equation for second virial coefficients using a corre-
sponding states approach �Ref. 62�.

TABLE VI. The PES for Xe–N2 and predictions of constants derived from spectroscopy.

Observable kdV BTT TNTA TNTB MNT Ab initio

ks , mdyne/Å 0.012 191a 0.017 526a 0.013 838a 0.013 179a 0.018 014a 0.007 698a

kb , mdyne.Å 0.001 725a 0.006 248a 0.005 199a 0.005 104a 0.009 369a 0.000 629a

�Rm	, Å 4.0581�12�b 4.0279�16�b 4.1442�7�b 4.1584�13�b 4.0065�27�b 4.3897�11�b

A , MHz 68 862�495�b 65 293�282�b 66 486�250�b 66902�144�b 63225�51�b 90.2(36)�103b

B , MHz 1333.72�90�b 1354.1�11�b 1279.44�39�b 1271.17�77�b 1368.8�17�b 1140.27�60�b

C , MHz 1306.91�86�b 1325.6�10�b 1254.29�39�b 1246.38�74�b 1339.4�16�b 1121.83�58�b

D0 , cm�1 134.66�8�b 134.47�14�b 108.58�13�b 102.80�33�b 131.30�21�b 74.28�7�b

�/kB �90°�, K 231.3 247.1 204.1 194.9 251.1 131.2
Rm �90°�, Å 3.945 3.891 3.984 4.000 3.873 4.218
� �90°�, Å 3.444 3.465 3.551 3.565 3.452 3.752
�/kB �0°�, K 163.4 178.5 142.1 132.0 129.5 97.3
Rm �0°�, Å 4.422 4.451 4.563 4.586 4.582 4.763
� �0°�, Å 3.927 4.016 4.117 4.139 4.138 4.294

aFrom analytic derivatives of the potential function at the global minimum.
bFrom quantum diffusion Monte Carlo solution of the van der Waals vibrational motion. These are averages over the ground-state vibrational wave functions.
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tion energy of the complex from its ground vibrational state.
The results are shown in Table VI. We do not have experi-
mental spectroscopic data to compare with, however.

The Xe–CO system

The intermolecular shielding values and the fitted func-
tion of the form given in Eq. �2� for 129Xe in Xe–CO are
shown in Fig. 10. This angle-dependent description gives a
reasonably good description of the calculated values. The
root-mean-square deviation of this fit was 2.58 ppm. This is
a highly anisotropic shielding surface, with the C end of the
CO molecule ���180°� providing a greater magnitude of
deshielding at equal distances from the center of mass. Part,
but not all of this anisotropy has to do with the center of
mass being closer to the O end of the molecule. If we com-
pare the values at equal distances of Xe from the C and O
nuclei, we find that in the collinear arrangement, the inter-
molecular Xe shielding is �24.67 ppm at R(Xe–O)
�3.4 Å, whereas it is �106.24 ppm at R(Xe–C)�3.4 Å,
and they are respectively �5.08 and �25.87 ppm at
R(Xe–O) and R(Xe–C)�4.0 Å. We note that Eq. �2� does
not have the correct derivatives with respect to � in the range
��0°–40° to reproduce the detailed shape of the shielding
surface in this range of angles at short distances. Neverthe-
less, the overall fit is reasonably good. A description based
on a sum of site–site functions, Xe–O, and Xe–C, as in Eq.
�2� gives a poorer fit, with a root-mean-square deviation of

nearly 10 ppm. The shape of the intermolecular shielding
function is complementary to that of the short-range part of
the potential shown in Fig. 11.

The characteristics of the potential function for the
Xe–CO system constructed in this work, using damped dis-
persion terms according to Eq. �10�–�12�, and dispersion co-

FIG. 9. The predicted second virial coefficients of 129Xe nuclear shielding
for Xe–N2 calculated by averaging the ab initio Xe–N2 intermolecular
shielding surface using various potentials are compared with the experimen-
tal data obtained in the gas phase �Ref. 24�.

FIG. 10. The 129Xe intermolecular shielding surface from ab initio calcula-
tions in Xe–CO and the fitted function of the form given in Eq. �2�.
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efficients from Hettema et al.37 are shown in Table IV com-
pared with our PES for Xe–CO2 and Xe–N2. The global
minimum in the potential-energy surface is at 4.183 Å and
��88.7°; the rotational barrier at the oxygen end is low
(5.2 cm�1) while the rotational barrier at the carbon end is
high (55.5 cm�1). The difference between the rotational bar-

riers for the rare gas atom at the two ends of the CO mol-
ecule is greater for Xe–CO than had been found for
Ar–CO.78

Our potential function for Xe–CO only finds 52% and
33% of the experimental pressure second virial coefficient
values at 173 and 273 K.62 The results are shown in Fig. 12
together with the other potential-energy surfaces constructed
in this work. Overall, the PES constructed in this work uni-
formly underestimate B12(T).

Using our calculated intermolecular shielding function
for Xe–CO to calculate the second virial coefficient of the
129Xe intermolecular nuclear shielding �1(Xe–CO) as in Eq.
�16�, we find the prediction of our Xe–CO potential function
for the temperature dependence of this observable. As we
can see in Fig. 13, our potential gives a reasonable agree-
ment with the experimental temperature dependence of the
density coefficients of 129Xe chemical shifts that we had
measured in mixtures of Xe and CO as well as Xe in N2.

25

Our potential provides the right behavior with temperature,
recovering 62% of the experimental value at 300 K. The
unusual behaviors of �1(Xe–N2) and �1(Xe–CO) in con-
trast to the temperature dependence of �1(Xe–CO2) and
�1(Xe–Xe) are both accounted for.

Spectroscopic constants predicted from this potential are
shown in Table VII. The only available spectroscopic data
on the Xe–CO van der Waals complex is from Johns et al.79

They found that the rotational constant B�0.0415 cm�1, B

FIG. 11. Ab initio values for Vshort for Xe–CO and the fitted functions of the
form given in Eq. �6�–�8�, to be compared with Fig. 10.

FIG. 12. The pressure second virial coefficient predicted by the potential-
energy surfaces which have been constructed in this work are compared
with the experimental data. The experimental points at 173, 223, 273, and
323 K are from Brewer and the other experimental points are based on
Brewer’s universal correlating equation for second virial coefficients using a
corresponding states approach �Ref. 62�.
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�C�0.0015 cm�1, D�0.40�10�6 cm�1, and �� �the shift
in the origin of the complex band relative to the CO
monomer���0.867 cm�1. They deduced nearly a 90° angle
and the ‘‘effective intermolecular separations’’ of 4.195 Å.
We find that we have a larger average value of R�4.359 Å�
and an average angle ��	 close to 70°, and these translate to
smaller rotational constants than experiment.

DISCUSSION

We have calculated the 129Xe intermolecular shielding
surfaces in the interaction of Xe with a linear molecule and
have found that these surfaces are highly anisotropic. The
intermolecular shielding surfaces seem to have a comple-
mentary behavior with respect to the repulsive part of the
potential: Where the latter is large positive, the intermolecu-
lar shielding surface is large negative. This becomes most
obvious in the unsymmetrical case, Xe–CO, comparing Fig.
10 with Fig. 11. The extent to which the shielding surface is
expressed in the observed density coefficient of the nuclear
shielding of course depends on the weighting of various parts
of the surface by the Boltzmann factor which has the entire
potential in it, repulsive plus dispersion. This means that the
large deshielding which accompanies the geometries with the
large repulsive energies will contribute to the observed den-
sity coefficient only to the extent that is permitted by the
dispersion part of the potential energy. When the dispersion
part is large enough to compensate for the large repulsive
energies to give a reasonable Boltzmann factor, the large
negative deshielding accompanying these large repulsive
terms will be weighted favorably. This therefore is the
complementary way in which dispersion plays a key role in
the magnitudes of intermolecular shifts. In the early interpre-
tations of the solvent effects on the Xe NMR chemical shift
it had been assumed that dispersion played an important role,
and that this could be expressed in terms of the shielding
response to the mean-square fluctuating electric field that is
implicit in the London model for dispersion forces.80 Later
on, it was shown that the coefficient for such a quadratic
response to electric fields for Xe atom was orders of magni-
tude too small to account for the observed intermolecular
chemical shifts.81 The original intuitive ideas that dispersion
plays an important role in the Xe chemical shifts may now be
associated with the complementary role played by dispersion
contributions to the potential energy as described above. The
dispersion contributions to the intermolecular shielding sur-
face itself has not been calculated here, since these ab initio
calculations are only at the coupled Hartree–Fock level. In
the Ar–Ar system, it had been found that the dispersion con-
tributions to the intermolecular shielding which can be cal-
culated at the level of second order correlation are negligible
at all distances.16 We expect this to be the case also for Xe
shielding in Xe atom interacting with CO2 or even Xe.

We find that the pairwise sum of atom–atom contribu-
tions is inadequate to describe fully the intermolecular
shielding surface at short distances where the anisotropy is
very pronounced, as in these Xe-linear molecule cases. On
the other hand, the intermolecular shielding of a Xe atom
interacting with two CO2 molecules could probably be well
described by a sum of two functions, each one in a form
given by Eq. �1�. Thus, summing over Xe-solvent molecule
shielding functions for various configurations of Xe sur-
rounded by the first solvation shell in a liquid may give
acceptable results. Where the solvent molecule is much more
complex, such as for a Xe atom in the presence of a zeolite
cage, the description of the intermolecular shielding surface

FIG. 13. The predicted second virial coefficients of 129Xe nuclear shielding
for mixtures of Xe–CO2, Xe–N2, and Xe–CO calculated by averaging the
ab initio shielding surfaces over the potential-energy surfaces which have
been constructed in this work are compared with the experimental data
obtained in the gas phase �Refs. 24 and 25� and with the second virial
coefficient for Xe–Xe �Refs. 23 and 91�.

TABLE VII. Predictions of spectroscopic constants for Xe–CO from our
potential.

Observable Expt. Prediction

ks , mdyne/Å 0.008 182a

kb , mdyne•Å 0.001 931a

�C2	/�
cm�2/amagat

350b

�Rm	 , Å 4.195d 4.3595�9�c

��	, ° �90d 71.27�13�c

A , MHz 279(54)�103c

B , MHz 1244d 1154.73�49�c

C , MHz 1200d 1136.49�48�c

D0 , cm�1 76.56�7�c

aFrom analytic derivatives of the potential function at the global minimum.
bFrom integration according to Eq. �18�.
cFrom quantum diffusion Monte Carlo solution of the van der Waals vibra-
tional motion. These are averages over the ground-state vibrational wave
functions.

dFrom Ref. 79, B�0.0415 cm�1 and (B�C)�0.0015 cm�1.
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becomes very problematical. In such cases, use of an inter-
molecular shielding function containing sums of atom–atom
contributions appears to be the only practical choice, pro-
vided that shielding values for enough rare gas-zeolite frag-
ment configurations are included in the fitting.19

We have calculated the entire 129Xe shielding tensor at
each of the 70, 70, and 130 geometries of Xe–CO2, Xe–N2,
and Xe–CO, respectively. In this paper, we have only ex-
pressed the isotropic shielding in the form of a multidimen-
sional surface. We have not considered how to best describe
the elements of the tensor in a multidimensional surface,
since not only do the three principal components of the ten-
sor but also the orientation of the principal axes change with
geometry. At ��0° �and 180° in the case of Xe–CO� the
nuclear site symmetry is high and the orientation of the prin-
cipal axes of the tensor does not change with increasing dis-
tance. At ��90° the site symmetry is C2v for Xe–CO2 and
Xe–N2 and there are three unique tensor components.82 The
axis directions remain unchanged with increasing distance:
One is along the intermolecular vector, one is perpendicular
to the plane of the supermolecule, and the third is in the
plane of the molecule, perpendicular to the intermolecular
vector. However, for ��90° in the Xe–CO system or the
general case of arbitrary � values in any Xe-rigid linear mol-
ecule system, the nuclear site symmetry is Cs , the number of
unique nonvanishing tensor components is five82 and the
relative magnitudes of the diagonal components are no
longer simply related. The directions of the principal axis
system also changes with geometry in this case. There are
undoubtedly some very interesting insights which we have
yet to discover. This will be considered in future work. For
this time, we show only the change in the intermolecular
shielding anisotropy (� ����) for the ��0° �and 180° in the
case of Xe–CO� as a function of distance in Fig. 14. We note
that the anisotropy drops off very sharply with distance, even
faster than the isotropic shielding does. The isotropic shield-
ing for the collinear configuration is (� ��2��)/3. The com-
ponent parallel to the internuclear axis (� �) is purely dia-
magnetic and does not change very fast, but the change in
the component perpendicular to the internuclear axis with
increasing distance is more pronounced since it has both dia-
magnetic and paramagnetic terms, and the paramagnetic
term changes more drastically. Thus, the anisotropy (� �

���) has a more pronounced drop with increasing distance.
We have constructed what appear to be reasonable po-

tential functions for Xe–CO2, Xe–N2, and Xe–CO in a
straightforward way, without adjusting or scaling. We do
find that they all underestimate the pressure second virial
coefficient, recovering from 81% of the experimental value
in Xe–CO2 to about 50% in Xe–N2, and about 40% in Xe–
CO. In this way we know that the potential surfaces we have
constructed here need improvement. Nevertheless, we find
that when compared with other existing potential surfaces,
only the Buck potential for Xe–CO2 does better than ours.
For Xe–N2, none of the existing PES do as well as ours in
accounting for the second virial coefficient of shielding. Our
potential-energy surfaces provide the correct behavior of the
second virial coefficient of nuclear shielding with increasing

temperature. The change in the temperature behavior in go-
ing from Xe–CO and Xe–N2 to Xe–CO2 and Xe–Xe is well
reproduced, as can be seen in Fig. 13. We find here that the
temperature dependence of �1 is a very sensitive test of the
potential although the magnitude of the density coefficient at
room temperature does correlate with the isotropic average
well depth.

It is disappointing that the constructed functions did not
predict observables as well as we had hoped. We have found
that even in the case of CO2–Ar where the ab initio calcu-
lations were carried out at MP4 level using large basis sets,83

the constructed PES did not perform in a uniformly superior
manner to other more approximate potentials.84 The next
step would be to fix up the PES functions constructed here
by some method of scaling so as to at least give good agree-
ment with pressure second virial coefficients, without doing
too much damage to the temperature dependence of the sec-
ond virial coefficient of the Xe shielding. Once the functions
have been improved, testing against other observables can
proceed. For N2–Xe there are two experimental relaxation
cross sections that are extremely sensitive to the anisotropy
of the potential.85,86 These can be calculated by classical tra-
jectory methods for any given PES, as we have already done
for CO2–Ar, N2–Kr1, and N2–Xe.69,76,77,84 The magnitude
and the temperature dependence of these two independent
cross sections serve as critical tests of any PES. In addition,
there are some thermophysical properties which such classi-

FIG. 14. The anisotropy of the 129Xe shielding tensor for the collinear con-
figurations of Xe–CO2, Xe–N2, Xe–CO, and Xe–OC varies with distance.
Except for the sign, the behavior is analogous to the variation of the 129Xe
isotropic shielding in the collinear configuration �also shown here, relative
to the free atom�.
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cal trajectory results can be compared with, such as diffusion
coefficients for Xe–N2 and Xe–CO2,

87,88 and mixture vis-
cosities for Xe–CO2.

89 Furthermore, there are collision-
induced rotational perturbations which have been measured
for Xe–CO2 by Bulanin et al. at 291 K;65 the first and zeroth
spectral moments �1 and �1 for the intensity due to induc-
tion in pairs of dissimilar molecules have been reported by
Andreeva et al. at 295 K.90 For a quantitative interpretation,
these however require not only the anisotropic intermolecu-
lar potential surface but also a dipole moment surface.

CONCLUSIONS

We have calculated the 129Xe intermolecular shielding
surfaces in the interaction of Xe with a linear molecule using
a fairly large basis set for the Xe atom. We have found that
these surfaces are highly anisotropic. An important finding in
this work is that the anisotropy of the intermolecular shield-
ing surfaces can be described very well by using the same
types of expansions in the Pn(cos �) as have been found to
be satisfactory for describing the anisotropy of potential-
energy surfaces. To the best of our knowledge, this is the
first determination of the anisotropy of the full intermolecu-
lar shielding surface. The angular dependence of the surface
has been examined in detail. The intermolecular shielding
surfaces seem to have a complementary behavior with re-
spect to the repulsive part of the potential: Where the latter is
large positive, the intermolecular shielding surface is large
negative. This becomes most obvious in the unsymmetrical
case, Xe–CO. These intermolecular shielding surfaces deter-
mine the observed solvent effects on NMR chemical shifts of
Xe. The most quantitative comparisons are made with the
gas-phase density coefficients of the Xe chemical shifts that
have been measured in the mixture of Xe with other gases.

The potential surfaces we have constructed here need
improvement. It is customary to scale the dispersion and the
induction terms by a factor greater than 1.0, leading to
deeper potential wells, to account for the deficiencies asso-
ciated with the use of a limited multipole expansion. We
have not done any scaling of the dispersion and induction
terms. Nevertheless, our potential-energy surfaces do provide
the correct behavior of the second virial coefficient of 129Xe
nuclear shielding with increasing temperature. The change in
the temperature behavior in going from Xe–CO and Xe–N2

to Xe–CO2 and Xe–Xe is well reproduced.
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