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In this third paper of the triptych we use the Tinoco—Woody model of an electron on a helix as our
chiral systenil. Tinoco, Jr. and R. W. Woody, J. Chem. Ph¢§, 160(1964]. Diastereomerism is
achieved by varying the pitch of the helix. The full nuclear magnetic shielding tensor of a naked spin
is determined with various subtleties explicated. The results are compared to the Ne helix
diastereomers. @003 American Institute of Physic§DOI: 10.1063/1.1586700

I. INTRODUCTION IIl. MODEL

We examine the nuclear magnetic shielding tensor of 4" Electron constrained to a helix
naked spin interacting with an electron constrained to move  parenthetically we point out that the use of “free elec-
on a helix: The Tinoco—Woody modélThe electron on a tron” is a misnomer. The electron is constrained on the helix.
helix is the simplest model of a particle in a chiral potential The constraints may be realized through subjecting the par-
whose properties may be determined nonperturbatively in thfcle to a three-dimensional potential, and limiting the behav-
chiral potential. It is also the simplest model that manifestsor in directions normal to the space curve to the ground state
diastereomerism. in those directions, or else by having the constraints to begin
The earliest model of an electron in a chiral potential iswith. The latter gives operators that are not necessarily Her-
that of Condon and Eyring.The electron is subject to an mitian. Demanding Hermiticity yields additional terms in
asymmetric harmonic oscillator potential, various matrix elements. This point will be made clearer
when we look at the nuclear magnetic shielding tensor.
We now briefly discuss the model. In particular we de-
Vo(r)= ,EJ &ijXiX; () fine diastereomerism in the context of the model. In the main
we follow the notation of Tinoco and WoodyThe axis of

a potential which is even under parity. The states and eigerjf-he helix is taken to be parallel to tfreaxis. We shall place
he naked spin at the origin since this simplifies the calcula-

;/l?rlgs(j Lnya%/hZeacri]ifrrr;ncljr:]?g pe;tae(;ttli)gl:rhe oscillator is then perEion. Although the number of turns below tixeY plane ne_ed

not equal the amount above the plane, we shall consider the
limiting casesi(a) the spin is in the middle of the helix, and,
(b) the spin is at the beginning of the helix.
] ) ) ) o ) A space helix may be described in terms of three param-
which, itself, is odd under parity. The total potential is chiral. otars If the helix is wrapped around a cylinder parallel to the

Hence, to first order iV, and exactly inVo, chirality ;a5 then the position vector for the helix may be written
emerges.

In 1964 Tinoco and Woody exactly solved for the statesas
and eigenvalues of an electron constrained to live on a space (g)=ia cosg+jasinf+kbo 3)
curve helix: the “free” electron on a helix modélThey
calculated the rotational strengths and optical activity of thisyith
system. They showed the optical activity of helical copper
wires were in agreement with the model in the appropriate  —kr<g<km (4)
frequency rangé?® Balazset al* showed in detail how to
obtain the states, eigenvalues, and optical properties of &ar case(a), and
electron constrained to any space curve, including helices.
Maki and Persoorisused the same model, albeit classically, — 0<@<k2w (5)
to model the second-order nonlinear response of electrons in
chiral potentials. Very recently, Rikkeet al. determined the for case(b). The radius of the helix i, 27b is the pitch,
magnetochiral anisotropy of an electron on a h&lbnlike  andk is the number of turns. The handedness of the helix is
the other uses of the model, which are finite frequency regiven byb(>0). +b is a right-handed helixR) and —b is
sponses, the shielding is a static response. a left handed helixL).

Vi(r)=AXxyz (2
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We express diastereomerism by adding or subtracting alt is important to realize that the eigenstates do not “know”
additional pitchd (>0). We shall subsume all combinations whether the helix isL or R, or LI, or Lr. All aspects of
in a pitch, 2r8. Thus we define diastereomer combinationschirality appear in the operators.
as

Rr:  B=(b+d), (6a) B. Shielding tensor of a naked spin interacting
with the electron constrained to a helix
RI:  B=(b—d), (6b) . . .
A shielding tensor element of a single electron interact-

Lr: B=(—b+d), (600  ing with a naked spin at the origin is given by

LI:  B=(—b—d). (6d) oij=(€2/mc)(g|(1p*— pip))! p°|g) —[A%€?/(2mc?)?]
Because the axis of the helix is in tHedirection, the opera- 3

X ; .

tion of reflection in theXY plane and subsequent rotation by UE {<9|L'|U><U|L' le7l9)

7 about an axis in thXY plane is equivalent tg— — 8. We

shall further clarify this when we consider the angular mo- +(glL;/p%lv){vILi| @)}/ (E, —Eg). (13

mentum operators. Here|g) labels the ground state, the excited statep is the
By conservation of parity, any scalar prope(§) must  distance from the origin, and, is the dimensionless angular

obey momentum operator of the electron. As writtet) is a re-

ducible second rank tensor.
We now come to a fundamental subtlety that does not

S(Rr)=S(LI) and SRI)=S(Lr).

Any splitting must be occur when the particle is in a nonsingular three-dimensional
_ B potential. When the particle is constrained to a space curve,
S(RN=S(RI) or SLH—=S(Lr). the usual commutation relations between position and mo-

Concomitantly, any pseudoscalar propei®d must have menta do not hold. Hence the angular momentum operators
are not Hermitian. In addition, the angular momentum does

PSRr)=-PdLl) and P$RI)=—PSLr). not commute with the scalar distance. This situation may be

In terms of 3 it is clear that all scalar properties will be even @meliorated in two ways: first by constructing Hermitian op-

functions of 8 and all pseudoscalar properties will be odd €rators, second by constructing eigenstates in three dimen-
functions of 8 explicitly. sions and taking the appropriate limits. For a particle con-

The details of the model, the construction of variousStrained to move on a circle the second method is what is

operators, the eigenstates and eigenvalues of the electron BRrmally done. For a particle constrained to live on a helix

the helix may be found in the papers of Tinoco and Wdody this goal can be approximately accomplished. In either case,
and Tobiaset al* Here we just quote the results necessary tdhere are extra terms in the matrix elements that appear in
exhibit diastereomerism within the model. First we considePhysical responses such as the optical activity, and we shall

the eigenvalues. They are, as usual, see, the shielding tensor. We shall follow the second method,
- y though the first is more satisfying. In the Appendices we give
E,=#°n?/8mk*(a®+ %), n=1, 2,.. . (7)  the Hermitian version of the angular momentum operators
Hence and (L;/p®) for a particle on a helix.
En(Rr)=E,(Ll)<{1[a%+ (b+d)? 8
(RN =Eq(LDc{1fa*+(b+d)7]} €S) Il RESULTS
and

We considered two cases: Cas®, the naked spin lo-
En(R)=E(Lr)x{1[a%+(b—d)?]}. (99 cated at the center of the helix, helix limits arekw to
+kar, and Casdb), the naked spin located at the end of the
helix, helix limits are 0 to+k2#. The eigenfunctions for
case(a) are given in Eq.(12) while those for caséb) are
En(Rr)—En(Ll)x—4bd/(a?+b?). (10) given by Tinoco and Woody.The parameters are chosen to
be the same as those used for the Kelix in Paper II’ so
that comparison may be made with this systexsradius
E.(RN<E.(RI). (11) =3.260 A, k=(1+1/7)=1.142857, equivalent to that used

o ~_ for the Ng helix (electrons of Ne assumed to extend to half
We now construct the shielding tensor for a naked spin inthe gistance between Ne atoms in the helifb

teracting with an electron on a helix. For convenience we— g 557042 A rad?, to have the same pitch as was used for
shall present the method of calculation where the spin is ifhe Ng helix and|d|=0.055 704 2 A rad?, 10% of|b|. Nu-
Woody’s calculation yields as eigenfunctions by Mathematic&, for all numerical steps. We checked for
¥,.(6)=(km) Y2cogmei2k), m=1, 3, 5., (129 convergence of'the sum ovaer The paramagnetic sum con-
verged fast. Going up ta=50 does not increase the accu-
¥ (0)=(k7) Y?sin(mo/2k), m=2, 4, 6,... . (12b racy sufficiently to warrant the effort. Unlike all other mod-

LI andRr represent stretching the heliRl andLr represent
compression. Fob>d, weak diastereomers, we have

In this simple model it is always the case that
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TABLE I. Shielding tensor components for a naked spin at the center of a[lvalse(a)].

R L Rr Ll RI Lr
Term B=+b B=-b B=+b+d B=-b—d B=+b—d B=-b+d
gdiam 2.21375 2.21375 2.21125 221125 2.21558 2.21558
gdiam 2.191 44 2.191 44 2.206 79 2.206 79 2.176 81 2.176 81
odam 4.042 84 4.042 84 3.99251 3.99251 4.090 55 4.090 55
gdiam 2.816 01 2.816 01 2.803 51 2.80351 2.827 64 2.827 64
obarem —0.107 497 -0.107 497 -0.124 227 —-0.124 227 —0.090 889 4 —0.090 889 4
ofgam -0.183184 -0.183184 —0.217 469 —0.217 469 -0.15101 -0.15101
gbaam —3.45098 —3.45098 —3.309 15 —-3.309 15 —3.58948 —3.58948
gParam —1.247 22 —1.247 22 -1.216 95 -1.216 95 -1.27713 -1.27713
Tiso 1.568 79 1.568 79 1.586 57 1.586 57 1.550 52 1.550 52
gdiam 0. 0. 0. 0. 0. 0.
odam 0. 0. 0. 0. 0. 0.
afem 0. 0. 0. 0. 0. 0.
gdiam 0. 0. 0. 0. 0. 0.
gdiam —0.542 343 0.542 343 —0.584 021 0.584 021 —0.497 858 0.497 858
g diam —0.542 343 0.542 343 —0.584 021 0.584 021 —0.497 858 0.497 858
oharam 0. 0. 0. 0. 0. 0.
ofaram 0. 0. 0. 0. 0. 0.
oham 0. 0. 0. 0. 0. 0.
gbram 0. 0. 0. 0. 0. 0.
obaam 0.719774 -0.719774 0.759 66 —0.759 66 0.673377 -0.673377
obagam 0.820 592 —0.820592 0.886 768 —0.886 768 —0.750 708 —0.750 708
Txx 2.106 25 2.106 25 2.087 02 2.087 02 2.124 69 2.124 69
ovy 2.008 25 2.008 25 1.989 32 1.989 32 2.0258 2.0258
027 0.591 864 0.591 864 0.683 361 0.683 361 0.501 07 0.501 07
oxy 0. 0. 0. 0. 0 0
Tyx 0. 0. 0. 0. 0 0
oxz 0. 0. 0. 0. 0 0
o2x 0. 0. 0. 0. 0. 0.
ayz 0.177 431 —-0.177 431 0.175639 -0.175 639 0.17552 -0.17552
o2y 0.278 249 —0.278 249 0.302 747 —0.302 747 0.252 85 -0.25285
%[oxﬁ vyl 0. 0. 0. 0. 0. 0.
A owgt oay] 0. 0. 0. 0. 0. 0.
Hoygtomy 0.227 84 —0.227 84 0.239193 —-0.239 193 0.214 185 —-0.214 185
%[rrxy— vyl 0. 0. 0. 0. 0. 0.
Howg— o2y 0. 0. 0. 0. 0. 0.
Hoyr—ozy] —0.050 409 0.050 409 —0.063 554 1 0.063554 1 —0.038 665 2 0.038 665 2

els, and systems, the paramagnetic shielding tensor may be
exactly determined. As a practical decision, we evaluated all
results reported here usimg=2 to 30.

The calculated individual components for case are
shown in Table | and those for caé® are shown in Table .
Comparisons of compressétdr and Rl) and stretchedLl
andRyr) helices with the reference helix andR) are inter-
esting. The important conclusions are unchanged from the
n@Ne; (Ref. 7) or the Xe@ Ng calculations’ It is important i)
to note that the symmetry at the site of the naked spin, rather
than the molecular symmetry, governs the number of nonva-
nishing distinct shielding tensor components.

(i) The principal components of the symmetric part of
the shielding tensor in corresponding chiral models
are the same foR as forL, the same foRr as forLl,
the same foRlI as forLr. This is exhibited in Table |
for case(a), as well as in Table Il for casé). The
corresponding diagonal elements of the symmetric
part of the tensors are identical and the magnitudes of
the corresponding off-diagonal elements match.

(i)  Since the helical axis is chosen along thelirection

in the laboratory frame, the signs of the off-diagonal
elements(hence the antisymmetric tensor elements
alsg are reversed for the components involvigg
when the handedness of the helix is changed fRm
to L in all cases. The off-diagonal elements involving
only X andY do not change sigfthe antisymmetric
tensor elements alsoThis corresponds to a rotation
of the principal axes in going frorR to L.

The symmetry of the site of the naked spin in the case
(a) system is such that there is% axis (coordinates
are defined such that this symmetry axis is the labo-
ratory — X axig perpendicular to the helical axis, in
which caseoy; andoyy, o7x, andoyy are all zero

by symmetry for both the diamagnetic and the para-
magnetic components. Thus one principal axis of the
symmetric part of the shielding tensor lies along the
laboratoryX axis and the only off-diagonal symmetric
component isi[oyz+ o,y]. This symmetry is not
present in the casé€b) system so there are off-
diagonal components in both the diamagnetic and the
paramagnetic parts for cage).
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TABLE Il. Shielding tensor components for a naked spin at the end of a fedse(b)].

R L Rr LI RI Lr
Term B=+b B=-b B=+b+d B=-b—d B=+b—d B=-b+d
gdiam 2.32548 2.32548 2.324 59 2.32459 2.32198 2.32198
gdiam 2.300 69 2.300 69 2.29813 2.29813 2.297 03 2.297 03
gdiam 2.711 56 2.711 56 252373 2.52373 2.909 63 2.909 63
gdiam 2.44591 2.44591 2.38215 2.38215 2.509 55 2.509 55
gbaram —0.495 095 —0.495 095 —0.544 086 —0.544 086 —0.440 986 —0.440 986
gbaram —0.511 945 —0.511 945 —0.555 678 —0.555 678 —0.461 152 —0.461 152
gbaram —2.63454 —2.63454 —2.43752 —2.43752 —2.8423 —2.8423
gharam —1.21386 —1.21386 —1.179 09 —1.17909 —1.24815 —1.248 15
Tiso 1.232 05 1.232 05 1.203 05 1.20305 1.2614 1.2614
gdiam 0.0133417 0.0133417 0.013 866 0.013 866 0.0127735 0.0127735
gdiam 0.0133417 0.0133417 0.013 866 0.013 866 0.0127735 0.0127735
gdiam 0.576 092 —0.576 092 0.600 589 —0.600 589 0.543 762 —0.543 762
diam 0.576 092 —0.576 092 0.600 589 —0.600 589 0.543 762 —0.543 762
gdiam 0.379 758 —0.379 758 0.352 074 —0.352074 0.401 632 —0.401 632
gdiam 0.379 758 —0.379 758 0.352074 —0.352 074 0.401 632 —0.401 632
gbaram —0.005714 14 —0.005714 14 —0.008 427 67 —0.008 427 67 —0.002 854 53 —0.002 854 53
gharam —0.005 71393 —0.005 71393 —0.008 427 38 —0.008 427 38 —0.002 854 38 —0.002 854 38
ohgam —0.554 872 0.554 872 —0.586 356 0.586 356 —0.515 84 0.51584
gharam —0.554 874 0.554 874 —0.586 358 0.586 358 —0.515 842 0.515 842
gfaam —0.560 637 0.560 637 —0.536 994 0.536 994 —0.576 009 0.576 009
gh3am —0.560 639 0.560 639 —0.536 997 0.536 997 —0.576 011 0.576 011
Oxx 1.830 39 1.830 39 1.7805 1.7805 1.880 99 1.880 99
vy 1.78875 1.78875 1.742 45 1.742 45 1.83588 1.83588
77 0.0770194 0.0770194 0.086 209 0.086 209 0.0673217 0.067 3217
Tyy 0.007 627 54 0.007 627 54 0.005 438 32 0.005 438 32 0.009 919 01 0.009 919 01
oy 0.007 627 75 0.007 627 75 0.005 438 61 0.005 438 61 0.009 919 16 0.009 91916
Oxz 0.0212197 —0.0212197 0.0142331 —0.0142331 0.027 922 —0.027 922
T2y 0.0212179 —0.0212179 0.014 231 —0.014 231 0.027 9204 —0.027 920 4
vz —0.180878 0.180878 —0.18492 0.184 92 —0.174 377 0.174 377
o7y —0.180 881 0.180 881 —0.184 923 0.184 923 —0.174 379 0.174 379
U oyy+ oyl 0.007 627 64 0.007 627 64 0.005 438 46 0.005 438 46 0.009 919 08 0.009 919 08
Moyt ory] 0.0212188 —0.0212188 0.0142321 —-0.0142321 0.027 9212 —0.0279212
Hoyr+ oyl —0.180 879 0.180 879 —0.184 922 0.184 922 —0.174 378 0.174 378
%[UXY_ vyl —1.076 16<1077 —1.076 16<10°7 —1.4639% 1077 —1.4639% 1077 —7.4762x10°8 —7.4762x10°8
%[UXZ_ o7x] 9.152 25¢ 1077 —9.15225¢1077 1.06128<10°8 —1.06128<10°° 7.67825¢10°7 —7.67825¢1077
Hovr— o] 1.36045¢10°6 —1.36045<10°6 1.565 621076 —1.56562%10°° 1.151 721078 —1.151 721078

(iv)  The shielding tensor has a nonvanishing antisymmet- o2 Lr, R)<oPAaMLI, Rr).
ric part in a chiral environment. In caga), as de-
ig:‘nb;:neantigvaer-eieanod”iYC?fftr?l:aSgtcr)lr;a(I)npl); ;anrgg?;?ucThe resulting sign of the chiral shift is dominated by the
metric component in cas@) is paramagnetic terms,
Hovz7—o7y]=—0.050409 ppm forR and
10.050409 ppm forL, Oiso(Ll, Rr)—aoi(Lr, RI)=+0.03605 ppm.
as can be seen in Table I. In principle, three different »
antisymmetric components do not vanish in cése ggm Tablg | for case(a) _we note that Ugmqpressed
Unfortunately, these antisymmetric components are” UfefefenC_eS'ngﬁ the ec!gﬁtron IS, on average, F:Ioser to the
all small, as seen in Table Il. The naked spin is onlynaked SPINTsiretched™ O referenceSINCe the electron is, on aver-
close to the electron at the one end of the helix wherd9®: farther from the naked spin. In Table Il for cabpwe
the boundary conditions makes all the wave functions©€ halocompressed” TreferenceSince the electron is, on aver-
vanish. age, closer to the naked spin. This is more pronounced in
case(b) than in casga) since those parts of the helix that
(i)  There is a chiral shift. That is, there is a shielding contribute the largest p/are essentially unchanged upon
difference betweetRr, LI) and(RI, Lr). Forn@helix,  compression ina), but are changed quite a lot upon com-
the diamagnetic parts alone give pression in(b). odianed< o man c.Since the electron is, on
oW Ly, RI)>gdaML], Rr), average, farther from the naked SPI S essed” T raiorenc
> Oreterence Ostretched  SINCE COMpression gives largerpl/
and the paramagnetic parts are in the opposite order, for all points on the helix.
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TABLE lIl. The diamagnetic part of the shielding tensor for the naked spin from the electron on a helix and from the electron on a circleafgathinsls
for ground state.

(i) (i)

Term Electron on a helix Electron on a circle, Electron on a helix, Electron on a circle
[case(@)] ppm naked spin at the center ppm  [case(b)] ppm naked spin below center ppm
_ p var p=a=3.260 A var p=[a’+s?]1?=3.8246 A

o3x"= (e212mc?) (g| (y*+29)/p%g) 2.21375(2.160 99* 2.161 2.32548 2.345 65
o93"=(e%2mc?)(g|(x*+ %)/ p°|g) 2.191 44(2.160 992 2.161 2.300 69 2.34565
098"=(e2mc*)(g|(x*+y?)/p°|g) 4.042 84(4.321 98° 4.322 2.71156 2.676 52

oAM= (e2/3mc?)-(g|1/p|g) 2.816 01(2.881 322 2.881 2.445091 2.45594

8For g=0.

IV. DISCUSSION p=const=a. The diamagnetic shielding is easily calculated

Some interesting symmetry conseguences for the Cor_nf_or the electron on a circle, naked spin at the center:

ponents of the shielding tensor become transparent in this  gam_, » . 2, o, 3
simple model for chiral systems and are worth not{sge axx=(e*12mc*)(0|(y*+2%)/p®|0)

Tables | and I. =(e?/2mc?)-(1/2a),

(i)  The matrix elemen{1|L,|n) is zero for evem for dam. o
case(a), whereas it is nonzero for both odd and even 977 = (€2mc®)(1/a).
n in case (b) becausel, is even;(1|Ly/n) and )
(1|L,In) are zero fom odd in case(a whereas they Furthen_’nore., wherﬁ—>0 andk=1, the resul_ts for the dlg—
are nonzero for both odd and everin case(b) be- ~ Magnetic shielding of an electron on a helix, naked spin at

causel, andL, are odd relative to the origin. the center, casén), _should redyce exactly t.o the results for
(i) In case(a) only oddn states contribute to032™and the electron on a circle of radiws naked spin at the center.
only evenn states contribute tar{3@™ and o23a™ On the other hand, for the diamagnetic shielding, the
whereas both odd and everstates contribute to these "eSults for electron on a helix, naked spin at the end, dase
paramagnetic terms in cage). should be close to the results for electron on a circle of radius

(i) In case(@ oP¥@™andoP¥ @ vanish forn even(due to a, naked spin below center, locatedzat —s= —bk. For

(1|L,In)) and vanish fom odd (due to(1|Ly|n)); the 2elect{gn on a halo, we ug?.c bkw=. 2.0{&, gzconst
oP2aMand o223 anish forn even(due to(1|L,|n)) =[a?+5’]Y2=3.8246 A. The diamagnetic shielding for the

and vanish fom odd (due to(1|L,|n)); oP¥a™ and electron on a circle, naked spin below center, is given by
param ;
o%y" are nonzero only for even states, they vanish diam_ . 2 5 2 3
for n odd (due to both(1|Ly/n) and(1|L,|n}). ox = (€%2me) - (0| (y*+2%)/p°|0)
(iv)  Since the axis Qf the helix is along tfeaxis and in =(e22m)-[ Lp—a?/2p?],
case(a) the helix hasC,(,, symmetry, the only off-
diagonal tensor components &f& andZY. Both dia- O_czii;m:(ezlzmcz)(aZ/pS)_

magnetic and paramagnetic terms contribute to these

off-diagonal tensor components in the symmetric teny, apje || we compare the magnitudes of the diamagnetic
sor. Only the paramagnetic term contributes to the angem, for casda) with that for an electron on a circle, located
tisymmetric tensor. In casi) there is no such sym- 4t the center of the cade) helix. We find that the diamag-
metry, so off-diagonal components are nonvanishing,gic part of the shielding does indeed become equal to that
for both the symmetric and antisymmetric tensor of ot the electron on a circle as the limiting situation, when
case(b). o o 5—0 andk= 1. Because of boundary conditions, the highest
(V) In case(b) ofy*"and o5 are much, much smaller - hopapility for the electron in the ground state of the helix
than the others sincgl|L,|n) and (1[Ly|n) are a6 () is in the middle (siA6), thus very similar to an

diam

smallerartnhar‘(1|LZ|n>, term by term. Similarlyog electron on a halo above the naked spin. Indeed, Table I

di
and oy are much, much smaller than the othersgpoys that the diamagnetic shieldings for céseis nearly
sincez is positive at every point, and contributes®  qentical to that of the electron halo.
andyz products, whereaz andy coordinates are of An interesting point about whether the electron on a he-
both signs. lix truly reduces to an electron on a circle in the lingi-0

Some interesting comparisons can be made of the shielc?—ndk: L is considered here. There is one term in the para-

. 9 P . . magnetic shielding for an electron on a helix that does not

ing of a naked spin by an electron on a helix against thevanish asB—0:

shielding by an electron on a circle. For the diamagnetic '

shielding, the results for electron on a helix, naked spin at th L2102 o2

’ ’ 1|[—ia“/(a“+ aladn

center, cas€a), should be close to the results for electron on? I ( il I

a circle of radiusa, naked spin at the centea=3.260 A, (n|[—ia?% p3@®+B?)]9l36|1).
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This does not vanish far even in both casés) and caseb). TABLE IV. Comparison of the shielding tensor at the origin of the same
In fact, in both caseéa) and caséb), this contribution to the right handed helix, one with eight Ne atoms on it, the other with one elec-

. . . tron on it.
paramagnetic shielding g&—0 reduces to the same expres-
sion: Ne;z helix Electron on a helixcase(a)]
Full tensor
param_ _ /.2 2\, seveny .2 2_1)\3 1.1267 0 0 2.106 25 0 0
0zz (€*2me*)(32/am?)-77%5{n? (n*~ 1)}, 0 0.6934 +0.9742 0 200825  0.278249
0 +0.9748 —1.8249 0 0.177431  0.591 864

Why does the paramagnetic shielding of a naked spin ex- Symmetric tensor

posed to an electron on a helix withB=0 and k=1 not 1.1267 0 0 210625 0 0

reduce to the same zero paramagnetic shielding as for th 06934 +0.9745 0 2.008 25 0.22784
. : +0.9745 -1.8249 0 0.227 84 0.591 864

naked spin exposed to the electron on a circle? The electron

on a helix cannot reduce to the electron on a circle for all Antisymmetric tensor

properties because of the boundary conditions on the waveg 8 80003 % % +00050 408
functions of the helix; the functions all have to vanish at the +0.0003 o 0 0050409 0

ends of the helix. The electron on a circle does not have the
same boundary conditions. For a specific eigenstate, one
could imagine cutting the circle at a node so that it looks like
a one-turn helix with a vanishing pitch and then compare any
properties calculated as expectation values for this eigenstate iso(LI) = oiso(LT) = +0.036 05 ppm
of the circle with those for a one-turn helik€1) with a = 0 i(R1) — oo RI)
vanishing pitch(3—0). However, matrix elements between 1se se
different eigenstates cannot be compared unless the twof this isotropic chiral-shift—0.024 13 ppm comes from the
states have one node at the same point, at which the cut calimamagnetic part ane-0.060 18 ppm comes from the para-
be made. Since paramagnetic shielding involves matrix elemagnetic part. The paramagnetic part dominates the chiral
ments between the ground and all other states, there is r&hift for the electron on a helix.
possibility of cutting at the same point for all of them; thus The parameters for the helix in this work were chosen to
the paramagnetic shielding for an electron on a helix canndbe the same as that used for thegNeelix in Papers | and
reduce to that for an electron on a circle. I1”° so that comparison may be made with these systems. We
We already noted that only the paramagnetic part of thalready mentioned in the Results section four observations
shielding contributes to the antisymmetric shielding tensorabout the components of the shielding tensors in the model
The relationship between the nonvanishing antisymmetrisystem that are the same as those for naked spin or Xe atom
tensor for a system and chirality needs to be clarified heren the Ng helix. Now we consider the sign of the isotropic
As discussed in Paper®lwhen the chiral point group is chemical shift between the diastereomers. The relative order
lower thanD,, T, or O, chirality is a sufficient condition for of the isotropic shieldings of the naked spin in the diastereo-
the existence of an antisymmetric contribution to the shieldmeric electron on a helix systems are found to be
ing tensor. It is not a necessary condition. The fact that . . .
[oyg— oz ] [0y2— opy]L, is both necessary and suffi- Lr, Rl are less shielded thdrlL, Rr in n@e™ helix,
cient thatLl andLr are diastereomers. Hence, like the shiftsthe same order as we found for foand! helices of negative
themselves, the antisymmetric terms may be measures gharges,
chirality. ] ]
Going from the left- to the right-handed helix changes LT+ Rl are less shielded tharl, Rrin n@Ne;.
the sign of the antisymmetric part of the tensor, but the sigioyy the other hand, we found farand| helix of positive
of the antisymmetric part is not intrinsic to the handednesseharges, the relative order was
We establish this by comparing the shielding of a naked spin
in the electron on a helix with that in the péelix. For  Lr, Rl are more shielded thanl, Rr in n@ Ney
example, in Table IV, we compare the N&elix and the
electron on a helix, both right-handed. The order of the di- and Xe@Ng.
agonal tensor elements iscx> oyy> 0. The signs of the Figure 1 compares the electron on a helix model against
off-diagonal symmetric parts are positive for both systemsthe Neg helix with the naked spin at the center of the helix in
but the signs of the antisymmetric parts are opposite. all cases, not really a fair comparison since perturbation, by a
In Table V, the naked spin at the end of thegNeelix  helix (radius=6.3706 A of partial chargesr 0.061 952, on
can be compared with cage). Because of the boundary Ne; has moved the shielding of the naked spin by a large
conditions, the electron on a helix provides very small off-amount! On the other hand, the perturbation afforded by
diagonal symmetric terms, and even smaller antisymmetrichanging the pitch of the helix in the simple model is sym-
terms, but the number of nonvanishing components are awetrical about the unperturbed helix, of course. This plot
found for the Ng helix. Only the[ oy ,+ 07y] components definitely shows that it is not possible to determiaggriori,
are dominated by paramagnetic terms. the sign of diastereomeric chiral shiftdr, RI) can be more
Finally, we consider the sign of the chiral shift, or less shielded thafLl, Rr).
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TABLE V. Comparison of the shielding tensor at the end of a helix, one with eight Ne atoms on it, the other
with one electron on it.

Ne; helix Electron on a helixcase(b)]
Full tensor

0.7845 0.2015 —0.2654 1.830 39 0.007 627 75 0.0212179

0.202 4 0.1730 —-0.0384 0.007 627 54 1.78875 —0.180 881
—0.266 6 —-0.0377 —0.9610 0.0212197 —0.180878 0.0770194

Symmetric tensor

0.7845 0.20195 —0.2660 1.830 39 0.007 627 64 0.0212188

0.201 95 0.1730 —0.03805 0.007 627 64 1.78875 —0.180879
—0.266 0 —0.038 05 —0.9610 0.0212188 —0.180 879 0.0770194

Antisymmetric tensor

0 —0.000 45 +0.000 6 0 1.07610°7 —9.15x10° 7
+0.000 45 0 —0.000 35 —1.076x1077 0 —1.36x10° ¢
—0.000 6 +0.000 35 0 9.1%10 7 1.36x10°© 0

V. GRAND CONCLUSIONS In Paper | we investigated the shielding tensor of a Xe

In our series of three papers we investigated the mani@tom placed in the helices. That is, we looked at induced
hirality, or, for want of a better description, “induced dias-

festation of chirality in a scalar measurement, namely the o q laced th
nuclear magnetic shielding tensor. As noted, chirality appear reomerism. !n PaPer land Paper Il we replace ,t e Xe
by a naked spin. This allowed us to examine explicitly how

explicitly if and only if the given chiral system is coupled to o X X _
another chiral system. If the two chiral systems are boundh€ Xe electrons are affected by their interaction with dias-
tereomers.

together, that is diastereomerism. _ o
In Papers | and IT;? our chiral systems were of neon In Paper | we first calculated the complete shielding ten-
atom helices. The additional bound chiral system was simu$0rs of Xe imbedded in helices of 7-, 8-, and 15-Ne atoms
lated by chiral potentials: positive or negative point chargedVithout the added chiral potentials. The 7- and 15-Ne helices
arranged in helices. In Paper [this work) an electron con- being of lower symmetry contributed more elements than the
strained to a helix served as our chiral system. Varying thé-Ne helix. These extra elements are boring so we focused
pitch of the helix became our additional chiral potential, ourall analysis on the Nghelix. All three helices presented a
diastereomers. stringent test of the pairwise addition model of tensors of one

of us. We used the “dimer tensor model” to calculate the
second ranKsymmetric tensgrand scalar shift. The results

n@ e helx [n@Ne, (g " compared favorably to thab initio calculations. Hence the
8 15 . . . . .
1.61 Case (a) Lrs R+ | 0.940 pairwise mod.el shou_ld be u;eful for calculating the shielding
tensors of oriented interacting van der Waals complexes. It
160 | Li+ Rr+ | 0.020 provides no antisymmetric tensor elements. Of particular im-
portance is the result that replacing tethers with given chiral
0.900 potentials appears an adequate method of simulating diaste-
1591 stretched reomerism. This result holds not only for Xe but for the
£ H Re 0880 naked spin as well.
8 158 = 0.010 §__ By investigating both Xe and naked spins in the pres-
= = ence of the same Ne diastereomers we were able to clearly
23 157 | R L R { 0.000 ’&? look at induceq diastere_omerism. In particulqr we Ioo!<ed at
@ E— — H the (single antisymmetric tensor element splitting. It is an
g 0,010 %” order of magnitude larger in Xe than in the naked spin. We
© 1.56 ~ ® suggest that this is a new manifestation of diastereomerism.
-0.900 56 In Paper Il we calculated the nuclear magnetic shielding
155| Lr RI tensor of a naked spin interacting with an electron con-
compressed -0.920 strained to a helix. Here diastereomerism is mimicked by
U. —Rr changing the pitch of the helix. The model has many virtues.
1547 -0.940 First of all, all aspects of the Ne naked spin diastereomers
Lr. — RIL 10.960 may be reproduced with equivalent parameteadius, pitch,
153 | n @ Ne, (<) number of turn};lThe simple model captures thg essence of
8 V18] 0.980 the more complicated models. Second, the shielding tensor

FIG. 1. Level diagram comparing shielding and energy of various chiralObtalned Is exact. Hence the dlamagnetlc and paramagnetic

systems. The splitting between the shieldings of diastereomeric pairs is th'@rmS may be exac_tl_y CaICUIatEd: Althoth we chose the ori-
chiral shift. gin to be at the position of the spin, we could have calculated
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the relative weights of the paramagnetic and diamagnetic /p3— (1/p3)L,+i[3aB%2(a?+ B?)](sin6+ 6 cos)/p®,

contributions for any change of gauge origin. Tinoco and (B2)
Woody's model has proved to be an extremely useful model 3 , 32 o
of chirality. Ly/p>—(1p°)Ly—i[3ap"/2(a"+ )]

As we said in the beginning of Paper |, our work was X (cos@+ 0sind) 6l p°, (B3)
inspired by the experiments of the Pines group. We believe
that we may be optimistic about calculating the splittings ofL,/p3— (1/p3)L,+i[3a28%2(a®+ B3)]6/p°. (B4)

the shielding tensor of Xe in chiral cages with chiral tethers.
We also hope that our work may inspire experiments whiclACKNOWLEDGMENTS
would measure shieldings of Xe and naked sgorsalmost

naked spins, i.e3He) in chirally derivatized Buckyballs. This work has been supported by The National Science
Foundation(Grant No. CHE99-79259 R.A.H wishes to ac-

APPENDIX A: COMPONENTS OF THE ANGULAR knowledge numerous helpful conversations with I. Tinoco.

MOMENTUM In addition, he wishes to thank Professor I. Tobias for greatly

helping his understanding of the relation between three-
dimensional(3D) helices and 1D helices, in particular, for
supplying him(R.A.H.) with the approximate angular mo-

In this Appendix we write out the components of the
angular momentum defined as

L= (1/28)(r; X pj—pyxr))e'l¥, (A1)  mentum operators in 3D helical coordinates.
L,=[—iapB/(a’+ B?)][(sin6— 6 cosh)d/do+ 6sin6/2],
(A2)

.
s 2 2 . 1. Tinoco, Jr. and R. W. Woody, J. Chem. Ph¥§, 160(1964.
Ly=[iap/(a”+ B°)][(cosf+ #sing)d/df+ 6 cosb/2]), 2E. U. Condon, W. Alter, and H. Eyring, J. Chem. Ph§s753 (1937.

(A3) 3| Tinoco, Jr. and M. P. Freeman, J. Phys. Ché.1196(1957.
4N. L. Balazs, T. R. Brocki, and |. Tobias, Chem. Phy8, 141 (1976.

— in2 2 2
L,=—[ia%(a+ B?)]d/dé. (A4) 53 3 Maki and A. Persoons, J. Chem. P4, 9340(1996.
6V. Krstic and G. L. J. A. Rikken, Chem. Phys. Le®64, 51 (2002.
APPENDIX B: HERMITIAN OPERATORS ’D. N. Sears, C. J. Jameson, and R. A. Harris, J. Chem. Akgs 2691

(2003, preceding paper.
In this Appendix we write out the Hermitian operators 8Wolfram Research, Inc. Mathematica version 4, Champaign, IL, 1999.
°D. N. Sears, C. J. Jameson, and R. A. Harris, J. Chem. Ags2685
L/p3—= 12 (1p3) L+ Li(1p3)], (B1) (2003, this issue.
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