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Nuclear magnetic shielding and chirality. III. The single electron
on a helix model
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In this third paper of the triptych we use the Tinoco–Woody model of an electron on a helix as our
chiral system@I. Tinoco, Jr. and R. W. Woody, J. Chem. Phys.40, 160~1964!#. Diastereomerism is
achieved by varying the pitch of the helix. The full nuclear magnetic shielding tensor of a naked spin
is determined with various subtleties explicated. The results are compared to the Ne helix
diastereomers. ©2003 American Institute of Physics.@DOI: 10.1063/1.1586700#
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I. INTRODUCTION

We examine the nuclear magnetic shielding tensor o
naked spin interacting with an electron constrained to m
on a helix: The Tinoco–Woody model.1 The electron on a
helix is the simplest model of a particle in a chiral potent
whose properties may be determined nonperturbatively in
chiral potential. It is also the simplest model that manife
diastereomerism.

The earliest model of an electron in a chiral potentia
that of Condon and Eyring.2 The electron is subject to a
asymmetric harmonic oscillator potential,

V0~r !5(
i , j

ai j xixj , ~1!

a potential which is even under parity. The states and eig
values may be determined exactly. The oscillator is then
turbed by the anharmonic potential,

V1~r !5lxyz, ~2!

which, itself, is odd under parity. The total potential is chir
Hence, to first order inV1 and exactly inV0 , chirality
emerges.

In 1964 Tinoco and Woody exactly solved for the sta
and eigenvalues of an electron constrained to live on a sp
curve helix: the ‘‘free’’ electron on a helix model.1 They
calculated the rotational strengths and optical activity of t
system. They showed the optical activity of helical copp
wires were in agreement with the model in the appropri
frequency range.1,3 Balazset al.4 showed in detail how to
obtain the states, eigenvalues, and optical properties o
electron constrained to any space curve, including heli
Maki and Persoons5 used the same model, albeit classica
to model the second-order nonlinear response of electron
chiral potentials. Very recently, Rikkenet al. determined the
magnetochiral anisotropy of an electron on a helix.6 Unlike
the other uses of the model, which are finite frequency
sponses, the shielding is a static response.
2690021-9606/2003/119(5)/2694/8/$20.00
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II. MODEL

A. Electron constrained to a helix

Parenthetically we point out that the use of ‘‘free ele
tron’’ is a misnomer. The electron is constrained on the he
The constraints may be realized through subjecting the
ticle to a three-dimensional potential, and limiting the beha
ior in directions normal to the space curve to the ground s
in those directions, or else by having the constraints to be
with. The latter gives operators that are not necessarily H
mitian. Demanding Hermiticity yields additional terms
various matrix elements. This point will be made clea
when we look at the nuclear magnetic shielding tensor.

We now briefly discuss the model. In particular we d
fine diastereomerism in the context of the model. In the m
we follow the notation of Tinoco and Woody.1 The axis of
the helix is taken to be parallel to thez axis. We shall place
the naked spin at the origin since this simplifies the calcu
tion. Although the number of turns below theXY plane need
not equal the amount above the plane, we shall consider
limiting cases:~a! the spin is in the middle of the helix, and
~b! the spin is at the beginning of the helix.

A space helix may be described in terms of three para
eters. If the helix is wrapped around a cylinder parallel to
z axis, then the position vector for the helix may be writt
as

r ~u!5 ia cosu1 ja sinu1kbu ~3!

with

2kp<u<kp ~4!

for case~a!, and

0<u<k2p ~5!

for case~b!. The radius of the helix isa, 2pb is the pitch,
andk is the number of turns. The handedness of the heli
given byb(.0). 1b is a right-handed helix~R! and2b is
a left handed helix~L!.
4 © 2003 American Institute of Physics
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We express diastereomerism by adding or subtracting
additional pitchd ~.0!. We shall subsume all combination
in a pitch, 2pb. Thus we define diastereomer combinatio
as

Rr: b5~b1d!, ~6a!

Rl: b5~b2d!, ~6b!

Lr : b5~2b1d!, ~6c!

Ll : b5~2b2d!. ~6d!

Because the axis of the helix is in theZ direction, the opera-
tion of reflection in theXY plane and subsequent rotation b
p about an axis in theXYplane is equivalent tob→2b. We
shall further clarify this when we consider the angular m
mentum operators.

By conservation of parity, any scalar property~S! must
obey

S~Rr!5S~Ll ! and S~Rl!5S~Lr !.

Any splitting must be

S~Rr!2S~Rl! or S~Ll !2S~Lr !.

Concomitantly, any pseudoscalar property~PS! must have

PS~Rr!52PS~Ll ! and PS~Rl!52PS~Lr !.

In terms ofb it is clear that all scalar properties will be eve
functions of b and all pseudoscalar properties will be o
functions ofb explicitly.

The details of the model, the construction of vario
operators, the eigenstates and eigenvalues of the electro
the helix may be found in the papers of Tinoco and Woo1

and Tobiaset al.4 Here we just quote the results necessary
exhibit diastereomerism within the model. First we consid
the eigenvalues. They are, as usual,

En5\2n2/8mk2~a21b2!, n51, 2,... . ~7!

Hence

En~Rr!5En~Ll !}$1/@a21~b1d!2#% ~8!

and

En~Rl!5En~Lr !}$1/@a21~b2d!2#%. ~9!

Ll andRr represent stretching the helix.Rl andLr represent
compression. Forb@d, weak diastereomers, we have

En~Rr!2En~Ll !}24bd/~a21b2!. ~10!

In this simple model it is always the case that

En~Rr!,En~Rl!. ~11!

We now construct the shielding tensor for a naked spin
teracting with an electron on a helix. For convenience
shall present the method of calculation where the spin is
the middle of the helix. A textbook extension of Tinoco a
Woody’s calculation yields as eigenfunctions

Cm~u!5~kp!21/2cos~mu/2k!, m51, 3, 5,..., ~12a!

Cm~u!5~kp!21/2sin~mu/2k!, m52, 4, 6,... . ~12b!
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It is important to realize that the eigenstates do not ‘‘know
whether the helix isL or R, or Ll, or Lr. All aspects of
chirality appear in the operators.

B. Shielding tensor of a naked spin interacting
with the electron constrained to a helix

A shielding tensor element of a single electron intera
ing with a naked spin at the origin is given by

s i j 5~e2/mc2!^gu~1r22r ir j !/r
3ug&2@\2e2/~2mc2!2#

3(
v8

$^guLi uv&^vuL j /r3ug&

1^guL j /r3uv&^vuLi ug&%/~Ev2Eg!. ~13!

Here ug& labels the ground state,v the excited state;r is the
distance from the origin, andLi is the dimensionless angula
momentum operator of the electron. As writtens i j is a re-
ducible second rank tensor.

We now come to a fundamental subtlety that does
occur when the particle is in a nonsingular three-dimensio
potential. When the particle is constrained to a space cu
the usual commutation relations between position and m
menta do not hold. Hence the angular momentum opera
are not Hermitian. In addition, the angular momentum do
not commute with the scalar distance. This situation may
ameliorated in two ways: first by constructing Hermitian o
erators, second by constructing eigenstates in three dim
sions and taking the appropriate limits. For a particle co
strained to move on a circle the second method is wha
normally done. For a particle constrained to live on a he
this goal can be approximately accomplished. In either ca
there are extra terms in the matrix elements that appea
physical responses such as the optical activity, and we s
see, the shielding tensor. We shall follow the second meth
though the first is more satisfying. In the Appendices we g
the Hermitian version of the angular momentum operat
and (Li /r3) for a particle on a helix.

III. RESULTS

We considered two cases: Case~a!, the naked spin lo-
cated at the center of the helix, helix limits are2kp to
1kp, and Case~b!, the naked spin located at the end of t
helix, helix limits are 0 to1k2p. The eigenfunctions for
case~a! are given in Eq.~12! while those for case~b! are
given by Tinoco and Woody.1 The parameters are chosen
be the same as those used for the Ne8 helix in Paper II,7 so
that comparison may be made with this system:a5radius
53.260 Å, k5(111/7)51.142 857, equivalent to that use
for the Ne8 helix ~electrons of Ne assumed to extend to h
the distance between Ne atoms in the helix!. ubu
50.557 042 Å rad21, to have the same pitch as was used
the Ne8 helix andudu50.055 704 2 Å rad21, 10% of ubu. Nu-
merical precision was chosen to be the maximum permi
by Mathematica,8 for all numerical steps. We checked fo
convergence of the sum overn. The paramagnetic sum con
verged fast. Going up ton550 does not increase the acc
racy sufficiently to warrant the effort. Unlike all other mod
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Shielding tensor components for a naked spin at the center of a helix@case~a!#.

R L Rr Ll Rl Lr
Term b51b b52b b51b1d b52b2d b51b2d b52b1d

sXX
diam 2.213 75 2.213 75 2.211 25 2.211 25 2.215 58 2.215 58

sYY
diam 2.191 44 2.191 44 2.206 79 2.206 79 2.176 81 2.176 81

sZZ
diam 4.042 84 4.042 84 3.992 51 3.992 51 4.090 55 4.090 55

s iso
diam 2.816 01 2.816 01 2.803 51 2.803 51 2.827 64 2.827 64

sXX
param 20.107 497 20.107 497 20.124 227 20.124 227 20.090 889 4 20.090 889 4

sYY
param 20.183 184 20.183 184 20.217 469 20.217 469 20.151 01 20.151 01

sZZ
param 23.450 98 23.450 98 23.309 15 23.309 15 23.589 48 23.589 48

s iso
param 21.247 22 21.247 22 21.216 95 21.216 95 21.277 13 21.277 13
s iso 1.568 79 1.568 79 1.586 57 1.586 57 1.550 52 1.550 52

sXY
diam 0. 0. 0. 0. 0. 0.

sYX
diam 0. 0. 0. 0. 0. 0.

sXZ
diam 0. 0. 0. 0. 0. 0.

sZX
diam 0. 0. 0. 0. 0. 0.

sYZ
diam 20.542 343 0.542 343 20.584 021 0.584 021 20.497 858 0.497 858

sZY
diam 20.542 343 0.542 343 20.584 021 0.584 021 20.497 858 0.497 858

sXY
param 0. 0. 0. 0. 0. 0.

sYX
param 0. 0. 0. 0. 0. 0.

sXZ
param 0. 0. 0. 0. 0. 0.

sZX
param 0. 0. 0. 0. 0. 0.

sYZ
param 0.719 774 20.719 774 0.759 66 20.759 66 0.673 377 20.673 377

sZY
param 0.820 592 20.820 592 0.886 768 20.886 768 20.750 708 20.750 708

sXX 2.106 25 2.106 25 2.087 02 2.087 02 2.124 69 2.124 69
sYY 2.008 25 2.008 25 1.989 32 1.989 32 2.025 8 2.025 8
sZZ 0.591 864 0.591 864 0.683 361 0.683 361 0.501 07 0.501 07
sXY 0. 0. 0. 0. 0. 0.
sYX 0. 0. 0. 0. 0. 0.
sXZ 0. 0. 0. 0. 0. 0.
sZX 0. 0. 0. 0. 0. 0.
sYZ 0.177 431 20.177 431 0.175 639 20.175 639 0.175 52 20.175 52
sZY 0.278 249 20.278 249 0.302 747 20.302 747 0.252 85 20.252 85

1
2@sXY1sYX# 0. 0. 0. 0. 0. 0.
1
2@sXZ1sZX# 0. 0. 0. 0. 0. 0.
1
2@sYZ1sZY# 0.227 84 20.227 84 0.239 193 20.239 193 0.214 185 20.214 185
1
2@sXY2sYX# 0. 0. 0. 0. 0. 0.
1
2@sXZ2sZX# 0. 0. 0. 0. 0. 0.
1
2@sYZ2sZY# 20.050 409 0.050 409 20.063 554 1 0.063 554 1 20.038 665 2 0.038 665 2
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els, and systems, the paramagnetic shielding tensor ma
exactly determined. As a practical decision, we evaluated
results reported here usingn52 to 30.

The calculated individual components for case~a! are
shown in Table I and those for case~b! are shown in Table II.
Comparisons of compressed~Lr and Rl! and stretched~Ll
andRr! helices with the reference helix~L andR! are inter-
esting. The important conclusions are unchanged from
n@Ne8 ~Ref. 7! or the Xe@Ne8 calculations.9 It is important
to note that the symmetry at the site of the naked spin, ra
than the molecular symmetry, governs the number of non
nishing distinct shielding tensor components.

~i! The principal components of the symmetric part
the shielding tensor in corresponding chiral mod
are the same forR as forL, the same forRr as forLl,
the same forRl as forLr. This is exhibited in Table I
for case~a!, as well as in Table II for case~b!. The
corresponding diagonal elements of the symme
part of the tensors are identical and the magnitude
the corresponding off-diagonal elements match.

~ii ! Since the helical axis is chosen along theZ direction
Downloaded 08 Sep 2003 to 131.193.196.71. Redistribution subject to A
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in the laboratory frame, the signs of the off-diagon
elements~hence the antisymmetric tensor elemen
also! are reversed for the components involvingZ,
when the handedness of the helix is changed fromR
to L in all cases. The off-diagonal elements involvin
only X and Y do not change sign~the antisymmetric
tensor elements also!. This corresponds to a rotatio
of the principal axes in going fromR to L.

~iii ! The symmetry of the site of the naked spin in the ca
~a! system is such that there is aC2 axis ~coordinates
are defined such that this symmetry axis is the la
ratory 2X axis! perpendicular to the helical axis, i
which casesXZ andsXY , sZX , andsYX are all zero
by symmetry for both the diamagnetic and the pa
magnetic components. Thus one principal axis of
symmetric part of the shielding tensor lies along t
laboratoryX axis and the only off-diagonal symmetri
component is1

2@sYZ1sZY#. This symmetry is not
present in the case~b! system so there are off
diagonal components in both the diamagnetic and
paramagnetic parts for case~b!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Shielding tensor components for a naked spin at the end of a helix@case~b!#.

R L Rr Ll Rl Lr
Term b51b b52b b51b1d b52b2d b51b2d b52b1d

sXX
diam 2.325 48 2.325 48 2.324 59 2.324 59 2.321 98 2.321 98

sYY
diam 2.300 69 2.300 69 2.298 13 2.298 13 2.297 03 2.297 03

sZZ
diam 2.711 56 2.711 56 2.523 73 2.523 73 2.909 63 2.909 63

s iso
diam 2.445 91 2.445 91 2.382 15 2.382 15 2.509 55 2.509 55

sXX
param 20.495 095 20.495 095 20.544 086 20.544 086 20.440 986 20.440 986

sYY
param 20.511 945 20.511 945 20.555 678 20.555 678 20.461 152 20.461 152

sZZ
param 22.634 54 22.634 54 22.437 52 22.437 52 22.842 3 22.842 3

s iso
param 21.213 86 21.213 86 21.179 09 21.179 09 21.248 15 21.248 15
s iso 1.232 05 1.232 05 1.203 05 1.203 05 1.261 4 1.261 4

sXY
diam 0.013 341 7 0.013 341 7 0.013 866 0.013 866 0.012 773 5 0.012 773 5

sYX
diam 0.013 341 7 0.013 341 7 0.013 866 0.013 866 0.012 773 5 0.012 773 5

sXZ
diam 0.576 092 20.576 092 0.600 589 20.600 589 0.543 762 20.543 762

sZX
diam 0.576 092 20.576 092 0.600 589 20.600 589 0.543 762 20.543 762

sYZ
diam 0.379 758 20.379 758 0.352 074 20.352 074 0.401 632 20.401 632

sZY
diam 0.379 758 20.379 758 0.352 074 20.352 074 0.401 632 20.401 632

sXY
param 20.005 714 14 20.005 714 14 20.008 427 67 20.008 427 67 20.002 854 53 20.002 854 53

sYX
param 20.005 713 93 20.005 713 93 20.008 427 38 20.008 427 38 20.002 854 38 20.002 854 38

sXZ
param 20.554 872 0.554 872 20.586 356 0.586 356 20.515 84 0.515 84

sZX
param 20.554 874 0.554 874 20.586 358 0.586 358 20.515 842 0.515 842

sYZ
param 20.560 637 0.560 637 20.536 994 0.536 994 20.576 009 0.576 009

sZY
param 20.560 639 0.560 639 20.536 997 0.536 997 20.576 011 0.576 011

sXX 1.830 39 1.830 39 1.780 5 1.780 5 1.880 99 1.880 99
sYY 1.788 75 1.788 75 1.742 45 1.742 45 1.835 88 1.835 88
sZZ 0.077 019 4 0.077 019 4 0.086 209 0.086 209 0.067 321 7 0.067 321 7
sXY 0.007 627 54 0.007 627 54 0.005 438 32 0.005 438 32 0.009 919 01 0.009 919
sYX 0.007 627 75 0.007 627 75 0.005 438 61 0.005 438 61 0.009 919 16 0.009 919
sXZ 0.021 219 7 20.021 219 7 0.014 233 1 20.014 233 1 0.027 922 20.027 922
sZX 0.021 217 9 20.021 217 9 0.014 231 20.014 231 0.027 920 4 20.027 920 4
sYZ 20.180 878 0.180 878 20.184 92 0.184 92 20.174 377 0.174 377
sZY 20.180 881 0.180 881 20.184 923 0.184 923 20.174 379 0.174 379

1
2@sXY1sYX# 0.007 627 64 0.007 627 64 0.005 438 46 0.005 438 46 0.009 919 08 0.009 919
1
2@sXZ1sZX# 0.021 218 8 20.021 218 8 0.014 232 1 20.014 232 1 0.027 921 2 20.027 921 2
1
2@sYZ1sZY# 20.180 879 0.180 879 20.184 922 0.184 922 20.174 378 0.174 378
1
2@sXY2sYX# 21.076 1631027 21.076 1631027 21.463 9731027 21.463 9731027 27.476 231028 27.476 231028

1
2@sXZ2sZX# 9.152 2531027 29.152 2531027 1.061 2831026 21.061 2831026 7.678 2531027 27.678 2531027

1
2@sYZ2sZY# 1.360 4531026 21.360 4531026 1.565 6231026 21.565 6231026 1.151 7231026 21.151 7231026
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~iv! The shielding tensor has a nonvanishing antisymm
ric part in a chiral environment. In case~a!, as de-
scribed above, the only off-diagonal paramagne
components aresYZ andsZY , thus the only antisym-
metric component in case~a! is
1
2@sYZ2sZY#520.050 409 ppm forR and

10.050 409 ppm forL,
as can be seen in Table I. In principle, three differe
antisymmetric components do not vanish in case~b!.
Unfortunately, these antisymmetric components
all small, as seen in Table II. The naked spin is on
close to the electron at the one end of the helix wh
the boundary conditions makes all the wave functio
vanish.

~i! There is a chiral shift. That is, there is a shieldi
difference between~Rr, Ll! and~Rl, Lr!. Forn@helix,
the diamagnetic parts alone give

siso
diam~Lr , Rl!.s iso

diam~Ll , Rr!,

and the paramagnetic parts are in the opposite order,
Downloaded 08 Sep 2003 to 131.193.196.71. Redistribution subject to A
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s iso
param~Lr , Rl!,s iso

param~Ll , Rr!.

The resulting sign of the chiral shift is dominated by t
paramagnetic terms,

s iso~Ll , Rr!2s iso~Lr , Rl!510.036 05 ppm.

In Table I for case ~a! we note that scompressed
diam

.s reference
diam since the electron is, on average, closer to

naked spin.sstretched
diam ,s reference

diam since the electron is, on ave
age, farther from the naked spin. In Table II for case~b! we
note thatscompressed

diam .s reference
diam since the electron is, on ave

age, closer to the naked spin. This is more pronounced
case~b! than in case~a! since those parts of the helix tha
contribute the largest 1/r are essentially unchanged upo
compression in~a!, but are changed quite a lot upon com
pression in~b!. sstretched

diam ,s reference
diam since the electron is, on

average, farther from the naked spin.@scompressed
diam 2s reference

diam #
.@s reference

diam 2sstretched
diam # since compression gives larger 1r

for all points on the helix.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. The diamagnetic part of the shielding tensor for the naked spin from the electron on a helix and from the electron on a circle of radiusa; g stands
for ground state.

~i! ~ii !

Term Electron on a helix
@case~a!# ppm

Electron on a circle,
naked spin at the center ppm

Electron on a helix,
@case~b!# ppm

Electron on a circle
naked spin below center ppm

r var r5a53.260 Å var r5@a21s2#1/253.8246 Å
sXX

diam5(e2/2mc2)"^gu(y21z2)/r3ug& 2.213 75~2.160 99!a 2.161 2.325 48 2.345 65
sYY

diam5(e2/2mc2)"^gu(x21z2)/r3ug& 2.191 44~2.160 99!a 2.161 2.300 69 2.345 65
sZZ

diam5(e2/2mc2)"^gu(x21y2)/r3ug& 4.042 84~4.321 98!a 4.322 2.711 56 2.676 52
s iso

diam5(e2/3mc2)"^gu1/rug& 2.816 01~2.881 32!a 2.881 2.445 91 2.455 94

aFor b50.
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IV. DISCUSSION

Some interesting symmetry consequences for the c
ponents of the shielding tensor become transparent in
simple model for chiral systems and are worth noting~see
Tables I and II!.

~i! The matrix element̂ 1uLxun& is zero for evenn for
case~a!, whereas it is nonzero for both odd and ev
n in case ~b! becauseLx is even; ^1uLyun& and
^1uLzun& are zero forn odd in case~a! whereas they
are nonzero for both odd and evenn in case~b! be-
causeLy andLz are odd relative to the origin.

~ii ! In case~a! only oddn states contribute tosXX
paramand

only even n states contribute tosYY
param and sZZ

param

whereas both odd and evenn states contribute to thes
paramagnetic terms in case~b!.

~iii ! In case~a! sXY
paramandsYX

paramvanish forn even~due to
^1uLxun&) and vanish forn odd ~due to ^1uLyun&);
sXZ

paramandsZX
paramvanish forn even~due to^1uLxun&)

and vanish forn odd ~due to ^1uLzun&); sYZ
param and

sZY
paramare nonzero only for evenn states, they vanish

for n odd ~due to botĥ 1uLyun& and ^1uLzun&).
~iv! Since the axis of the helix is along theZ axis and in

case~a! the helix hasC2(x) symmetry, the only off-
diagonal tensor components areYZ andZY. Both dia-
magnetic and paramagnetic terms contribute to th
off-diagonal tensor components in the symmetric te
sor. Only the paramagnetic term contributes to the
tisymmetric tensor. In case~b! there is no such sym
metry, so off-diagonal components are nonvanish
for both the symmetric and antisymmetric tensor
case~b!.

~v! In case~b! sXY
paramandsYX

paramare much, much smalle
than the others sincê1uLxun& and ^1uLyun& are
smaller than̂ 1uLzun&, term by term. SimilarlysXY

diam

and sYX
diam are much, much smaller than the othe

sincez is positive at every point, and contributes toxz
and yz products, whereasx and y coordinates are o
both signs.

Some interesting comparisons can be made of the sh
ing of a naked spin by an electron on a helix against
shielding by an electron on a circle. For the diamagne
shielding, the results for electron on a helix, naked spin at
center, case~a!, should be close to the results for electron
a circle of radiusa, naked spin at the center,a53.260 Å,
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r5const5a. The diamagnetic shielding is easily calculat
for the electron on a circle, naked spin at the center:

sXX
diam5~e2/2mc2!"^0u~y21z2!/r3u0&

5~e2/2mc2!"~1/2a!,

sZZ
diam5~e2/2mc2!~1/a!.

Furthermore, whenb→0 andk51, the results for the dia-
magnetic shielding of an electron on a helix, naked spin
the center, case~a!, should reduce exactly to the results f
the electron on a circle of radiusa, naked spin at the cente

On the other hand, for the diamagnetic shielding,
results for electron on a helix, naked spin at the end, case~b!,
should be close to the results for electron on a circle of rad
a, naked spin below center, located atz52s52bkp. For
the electron on a halo, we uses5bkp52.0 Å, r5const
5@a21s2#1/253.8246 Å. The diamagnetic shielding for th
electron on a circle, naked spin below center, is given by

sXX
diam5~e2/2mc2!•^0u~y21z2!/r3u0&

5~e2/2mc2!•@1/r2a2/2r3#,

sZZ
diam5~e2/2mc2!~a2/r3!.

In Table III we compare the magnitudes of the diamagne
term for case~a! with that for an electron on a circle, locate
at the center of the case~a! helix. We find that the diamag
netic part of the shielding does indeed become equal to
of the electron on a circle as the limiting situation, wh
b→0 andk51. Because of boundary conditions, the high
probability for the electron in the ground state of the he
case~b! is in the middle (sin2 u), thus very similar to an
electron on a halo above the naked spin. Indeed, Table
shows that the diamagnetic shieldings for case~b! is nearly
identical to that of the electron halo.

An interesting point about whether the electron on a
lix truly reduces to an electron on a circle in the limitb→0
andk51 is considered here. There is one term in the pa
magnetic shielding for an electron on a helix that does
vanish asb→0:

^1u@2 ia2/~a21b2!#]/]uun&

•^nu@2 ia2/r3~a21b2!#]/]uu1&.
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This does not vanish forn even in both case~a! and case~b!.
In fact, in both case~a! and case~b!, this contribution to the
paramagnetic shielding asb→0 reduces to the same expre
sion:

sZZ
param52~e2/2mc2!~32/ap2!"(n52

even$n2/~n221!3%.

Why does the paramagnetic shielding of a naked spin
posed to an electron on a helix withb50 and k51 not
reduce to the same zero paramagnetic shielding as for
naked spin exposed to the electron on a circle? The elec
on a helix cannot reduce to the electron on a circle for
properties because of the boundary conditions on the w
functions of the helix; the functions all have to vanish at t
ends of the helix. The electron on a circle does not have
same boundary conditions. For a specific eigenstate,
could imagine cutting the circle at a node so that it looks l
a one-turn helix with a vanishing pitch and then compare
properties calculated as expectation values for this eigen
of the circle with those for a one-turn helix (k51) with a
vanishing pitch~b→0!. However, matrix elements betwee
different eigenstates cannot be compared unless the
states have one node at the same point, at which the cu
be made. Since paramagnetic shielding involves matrix
ments between the ground and all other states, there i
possibility of cutting at the same point for all of them; th
the paramagnetic shielding for an electron on a helix can
reduce to that for an electron on a circle.

We already noted that only the paramagnetic part of
shielding contributes to the antisymmetric shielding tens
The relationship between the nonvanishing antisymme
tensor for a system and chirality needs to be clarified h
As discussed in Paper I,9 when the chiral point group is
lower thanDn , T, or O, chirality is a sufficient condition for
the existence of an antisymmetric contribution to the shie
ing tensor. It is not a necessary condition. The fact t
@sYZ2sZY#LlÞ@sYZ2sZY#Lr is both necessary and suffi
cient thatLl andLr are diastereomers. Hence, like the shi
themselves, the antisymmetric terms may be measure
chirality.

Going from the left- to the right-handed helix chang
the sign of the antisymmetric part of the tensor, but the s
of the antisymmetric part is not intrinsic to the handedne
We establish this by comparing the shielding of a naked s
in the electron on a helix with that in the Ne8 helix. For
example, in Table IV, we compare the Ne8 helix and the
electron on a helix, both right-handed. The order of the
agonal tensor elements issXX.sYY.sZZ . The signs of the
off-diagonal symmetric parts are positive for both system
but the signs of the antisymmetric parts are opposite.

In Table V, the naked spin at the end of the Ne8 helix
can be compared with case~b!. Because of the boundar
conditions, the electron on a helix provides very small o
diagonal symmetric terms, and even smaller antisymme
terms, but the number of nonvanishing components are
found for the Ne8 helix. Only the@sYZ1sZY# components
are dominated by paramagnetic terms.

Finally, we consider the sign of the chiral shift,
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s iso~Ll !2s iso~Lr !510.036 05 ppm

5s iso~Rr!2s iso~Rl!.

Of this isotropic chiral-shift,20.024 13 ppm comes from th
diamagnetic part and10.060 18 ppm comes from the para
magnetic part. The paramagnetic part dominates the ch
shift for the electron on a helix.

The parameters for the helix in this work were chosen
be the same as that used for the Ne8 helix in Papers I and
II 7,9 so that comparison may be made with these systems
already mentioned in the Results section four observati
about the components of the shielding tensors in the mo
system that are the same as those for naked spin or Xe a
in the Ne8 helix. Now we consider the sign of the isotrop
chemical shift between the diastereomers. The relative o
of the isotropic shieldings of the naked spin in the diaster
meric electron on a helix systems are found to be

Lr , Rl are less shielded thanLL, Rr in n@e2helix,

the same order as we found for forr andl helices of negative
charges,

Lr , Rl are less shielded thanLl , Rr in n@Ne8.

On the other hand, we found forr and l helix of positive
charges, the relative order was

Lr , Rl are more shielded thanLl , Rr in n@Ne8

and Xe@Ne8.

Figure 1 compares the electron on a helix model aga
the Ne8 helix with the naked spin at the center of the helix
all cases, not really a fair comparison since perturbation, b
helix ~radius56.3706 Å! of partial charges60.061 953e, on
Ne8 has moved the shielding of the naked spin by a la
amount! On the other hand, the perturbation afforded
changing the pitch of the helix in the simple model is sy
metrical about the unperturbed helix, of course. This p
definitely shows that it is not possible to determine,a priori,
the sign of diastereomeric chiral shifts:~Lr, Rl! can be more
or less shielded than~Ll, Rr!.

TABLE IV. Comparison of the shielding tensor at the origin of the sam
right handed helix, one with eight Ne atoms on it, the other with one e
tron on it.

Ne8 helix Electron on a helix@case~a!#
Full tensor

1.1267 0 0 2.106 25 0 0
0 0.6934 10.9742 0 2.008 25 0.278 249
0 10.9748 21.8249 0 0.177 431 0.591 864

Symmetric tensor
1.1267 0 0 2.106 25 0 0
0 0.6934 10.9745 0 2.008 25 0.227 84
0 10.9745 21.8249 0 0.227 84 0.591 864

Antisymmetric tensor
0 0 0 0 0 0
0 0 20.0003 0 0 10.050 409
0 10.0003 0 0 20.050 409 0
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE V. Comparison of the shielding tensor at the end of a helix, one with eight Ne atoms on it, the
with one electron on it.

Ne8 helix Electron on a helix@case~b!#
Full tensor

0.784 5 0.201 5 20.265 4 1.830 39 0.007 627 75 0.021 217 9
0.202 4 0.173 0 20.038 4 0.007 627 54 1.788 75 20.180 881

20.266 6 20.037 7 20.961 0 0.021 219 7 20.180 878 0.077 019 4

Symmetric tensor
0.784 5 0.201 95 20.266 0 1.830 39 0.007 627 64 0.021 218 8
0.201 95 0.173 0 20.038 05 0.007 627 64 1.788 75 20.180 879

20.266 0 20.038 05 20.961 0 0.021 218 8 20.180 879 0.077 019 4

Antisymmetric tensor
0 20.000 45 10.000 6 0 1.07631027 29.1531027

10.000 45 0 20.000 35 21.07631027 0 21.3631026

20.000 6 10.000 35 0 9.1531027 1.3631026 0
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V. GRAND CONCLUSIONS

In our series of three papers we investigated the m
festation of chirality in a scalar measurement, namely
nuclear magnetic shielding tensor. As noted, chirality appe
explicitly if and only if the given chiral system is coupled
another chiral system. If the two chiral systems are bou
together, that is diastereomerism.

In Papers I and II,7,9 our chiral systems were of neo
atom helices. The additional bound chiral system was sim
lated by chiral potentials: positive or negative point charg
arranged in helices. In Paper III~this work! an electron con-
strained to a helix served as our chiral system. Varying
pitch of the helix became our additional chiral potential, o
diastereomers.

FIG. 1. Level diagram comparing shielding and energy of various ch
systems. The splitting between the shieldings of diastereomeric pairs i
chiral shift.
p 2003 to 131.193.196.71. Redistribution subject to A
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In Paper I we investigated the shielding tensor of a
atom placed in the helices. That is, we looked at induc
chirality, or, for want of a better description, ‘‘induced dia
tereomerism.’’ In Paper II~and Paper III! we replaced the Xe
by a naked spin. This allowed us to examine explicitly ho
the Xe electrons are affected by their interaction with di
tereomers.

In Paper I we first calculated the complete shielding te
sors of Xe imbedded in helices of 7-, 8-, and 15-Ne ato
without the added chiral potentials. The 7- and 15-Ne heli
being of lower symmetry contributed more elements than
8-Ne helix. These extra elements are boring so we focu
all analysis on the Ne8 helix. All three helices presented
stringent test of the pairwise addition model of tensors of o
of us. We used the ‘‘dimer tensor model’’ to calculate t
second rank~symmetric tensor! and scalar shift. The result
compared favorably to theab initio calculations. Hence the
pairwise model should be useful for calculating the shield
tensors of oriented interacting van der Waals complexes
provides no antisymmetric tensor elements. Of particular
portance is the result that replacing tethers with given ch
potentials appears an adequate method of simulating dia
reomerism. This result holds not only for Xe but for th
naked spin as well.

By investigating both Xe and naked spins in the pre
ence of the same Ne diastereomers we were able to cle
look at induced diastereomerism. In particular we looked
the ~single! antisymmetric tensor element splitting. It is a
order of magnitude larger in Xe than in the naked spin.
suggest that this is a new manifestation of diastereomeri

In Paper III we calculated the nuclear magnetic shield
tensor of a naked spin interacting with an electron co
strained to a helix. Here diastereomerism is mimicked
changing the pitch of the helix. The model has many virtu
First of all, all aspects of the Ne naked spin diastereom
may be reproduced with equivalent parameters~radius, pitch,
number of turns!. The simple model captures the essence
the more complicated models. Second, the shielding ten
obtained is exact. Hence the diamagnetic and paramagn
terms may be exactly calculated. Although we chose the
gin to be at the position of the spin, we could have calcula

l
he
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the relative weights of the paramagnetic and diamagn
contributions for any change of gauge origin. Tinoco a
Woody’s model has proved to be an extremely useful mo
of chirality.

As we said in the beginning of Paper I, our work w
inspired by the experiments of the Pines group. We beli
that we may be optimistic about calculating the splittings
the shielding tensor of Xe in chiral cages with chiral tethe
We also hope that our work may inspire experiments wh
would measure shieldings of Xe and naked spins~or almost
naked spins, i.e.,3He) in chirally derivatized Buckyballs.

APPENDIX A: COMPONENTS OF THE ANGULAR
MOMENTUM

In this Appendix we write out the components of th
angular momentum defined as

Lk5~1/2\!~r i3pj2pi3r j !«
i jk , ~A1!

Lx5@2 iab/~a21b2!#@~sinu2u cosu!d/du1u sinu/2#,
~A2!

Ly5@ iab/~a21b2!#@~cosu1u sinu!d/du1u cosu/2#),
~A3!

Lz52@ ia2/~a21b2!#d/du. ~A4!

APPENDIX B: HERMITIAN OPERATORS

In this Appendix we write out the Hermitian operators

Lk /r3→1/2@~1/r3!Lk1Lk~1/r3!#, ~B1!
Downloaded 08 Sep 2003 to 131.193.196.71. Redistribution subject to A
ic
d
el

e
f
.
h

Lx /r3→~1/r3!Lx1 i @3ab3/2~a21b2!#~sinu1u cosu!/r5,
~B2!

Ly /r3→~1/r3!Ly2 i @3ab3/2~a21b2!#

3~cosu1u sinu!u/r5, ~B3!

Lz /r3→~1/r3!Lz1 i @3a2b2/2~a21b3!#u/r5. ~B4!
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