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For two spherically symmetric molecules it is possible to directly determine the chemical shielding function
o(R) from the experimental values of the second virial coefficient of chemical shielding o(T) by inversion
of the integral equation o((T) = 4w §§ o"(R )exp[— V(R)/kT]R? dR. Various inversion methods are
considered and applied to the xenon system yielding a chemical shielding function which, when integrated
over all configurations, yields satisfactory agreement with experimental values of o (T).

Previous 'H, °F, and '*Xe NMR studies in gaseous
systems show that the chemical shift has an essentially
linear dependence on density at sufficiently low den-
sities, but precise measurements on ?°Xe show that
higher order terms in the virial expansion of chemical
shielding are important!:

olp, T) =0y + oy (T)p+ 0x(T)p? + 05(T) 0% +. . .,
where, p is the density, and at room temperature:

0,=—-0, 548+ 0, 004 ppm/amagat,

0,=(=0.169+ 0, 02) X 10°® ppm/amagat, ?

03=(0, 163+ 0, 01) X 10°° ppm/amagat. 3

Precise measurement of ol(T) in the temperature range
220 to 440 K have been carried out for °Xe in xenon
gas.? More precise Fourier transform NMR experi-
ments were carried out for xenon samples of much
lower densities (3 to 28 amagats) giving a more ac-
curate set of values for o,(T) for xenon, 3

The new experimental values of ¢,(7) have been fit-
ted to a 5th degree polynomial:

o (T)=~0.553+0, 1114x 10727 - 0, 765x% 107°7?
+0,436%x10777° - 0.132%x10°%% - 0, 545x 1071275

ppm amagat™?,

where 7= (T - 300) K.

Theoretically, it is possible to obtain the functional
form of the chemical shielding, o, of two interacting
molecules from very accurate measurements of the
temperature dependence of 0,., For spherically sym-
metric molecules such as Xe, the integration over all
configurations is a simple one:

o(T) = 41rf o(R)exp <_—V—(i)) RedR,

o kT

so that the chemical shielding of two interacting spher-
ically symmetric molecules is in terms of only one in-
dependent variable, R, the internuclear distance, Pre-
vious interpretation of o(R) in terms of a sum of con-
tributions due to neighbor-molecule magnetic anisot-
ropy, polar contributions, van der Waals and repul-
sive interactions, has been modestly successful in the
case of 'H and °F, and less so in the case of *Xe, '**
Part of the difficulty may have been the lack of good
potential functions for a pair of molecules under con-

- of K(x, ).

sideration, The rest may be due to the semi-quantita-
tive, albeit intuitive models used for the different con-
tributions, In order to have a check on the applica-
bility of these models, it is necessary tohave adirectly
determined functional form for o(R). This is possible
if ,(7) can be determined reasonably precisely over

a wide range of temperatures for a gas whose inter-
molecular potential is likewise precisely determined.
The intermolecular potential for Xe—Xe has been ob-
tained recently by fitting differential cross-section data,
second virial coefficients, and other data,® One then
only needs a suitable inversion procedure in order to
carry out a numerical solution for o(R) using precise
data points for 0,(7). Different inversion methods ap-
plicable to this type of integral equation are discussed
and applied to 0,(7T) to obtain a chemical shielding func-
tion for xenon,

METHODS FOR INVERSION OF 0, {T) DATA

The integral equation which has to be solved is:
tn [ olR)e ® AT R AR =0y(1)

in which the kernel is K(R, T) = 47e”V ®/*TR%  and o(R)
is the unknown function of R, the variation of chemical
shielding with intermolecular distance for two spher-
ically symmetric molecules, and the ¢y(T) are the mea-
sured second virial coefficients for chemical shielding
in the range of temperatures 240 to 440 K. This integral
equation is of the type

b
[ K iy =g ()
which is a Fredholm integral equation of the first kind,
The success in solving Eq. (1) by any method depends
to a large extent on the accuracy of g(x) and the shape
of K(x,v).°

Solution of Eq. (1) may be possible by analytical means
using known transforms which exist for certain forms
However, even if one could find a known
transform for the specific form of K(x,y) such trans-
forms invariably involve integration over the full range
of x values (~ = to += or 0 to «), In those cases where
g(x) are experimentally measured quantities, consisting
of a finite number of experimental data points of limited
accuracy over a small portion of the full range of x
values, such integrals have to be performed over in-
tervals of the x axis for which no experimental data are
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available and extrapolation is doubtful.

Solution of Eq. (1) by the well-known quadrature (so-
called “algebraic”) methods’ generally yield linear sys-
tems of equations which can be solved if the form of
g{x) is known with very high accuracy. The definite in-
tegral on the left-hand side of the equation may be re-
placed by a summation of n» terms of the form:

[ K09 o)y = 32, Koy 1) v
j=

a

where the abscissae y; as well as the corresponding
weight coefficients H; have been chosen to attain the
desired degree of accuracy with a given number of terms,
and to suppress the magnitude of the error term ¢, be-
low a pre-assigned limit. For n preselected discrete
values of T this integral equation can be written as:

;H, Ky, x)fy,) =glx) i=1,2... n .

With the values of H,K(y,, x;) as well as g(x;) regarded
as known, the above represents nothing else but a si-
multaneous system of »n algebraic equations for the deter
mination of # unknown values of f(y,). Theoretically,
this system can be solved uniquely for the f(y,)’s and

a polynomial of (- 1)st degree passing through these

n ordinates will then represent the corresponding ap-
proximation to the solution of the integral equation,
since the errorse¢, can presumably be made as small

as we please by adopting a sufficiently large value of n.
This method is useful provided g{x) is known for all
values of x with unlimited accuracy, Otherwise it often
fails because the linear system of equations is usually
too ill-conditioned ot tolerate any errors in the g(x).

One can resort to the approximation of f(y) by a finite
series of functions and the evaluation of their coefficients
by a least-squares method. I we let f(y) =30 ¢, F(y),
where F(y) are the series of functions (reducing functions)
used, our integral equation reduces to:

k=1 a

g =3 e, [ Kl PGy

n

g(xm) = Ckfb K(xnu y)F(y)dy .

k=1 a

The parameters c, are obtained by a least squares anal-
ysis of this set of linear equations, While this method
is more stable to errors in g(x), it has the obvious dis-
advantage of forcing the solution to take a fixed func-
tional form, especially serious since the number of
arbitrary coefficients must be considerably smaller
than the number of data points g(x) to ensure that the
resulting linear system will be sufficiently overdeter-
mined to give a reliable solution,

Several methods for solving integral equations of this
type numerically have been proposed® for certain ker-
nels K(x,y). No method has been very successful for
arbitrary kernels when the function g(x) is known with
only modest accuracy and only over a modest range of

5297

x values, We may think of this equation as a linear
operator on f(y) to produce g(x). This operator does

not have a bounded inverse, as has been shown by Phil-
lips.® We will assume here that it does have an inverse,

In order to solve Eq, (1) numerically we make a mat-
rix approximation to it:

Z wikuf;=g; or Af=g
i=0

where Ay =wyky;, by =K(x;,9;), g;=g(x;), and f; =f(y;),
and the w, are weight factors whose values depend on
the quadrature formula used. It is found that as the
mesh width decreases, the solutions first become more
accurate, but eventually begin to get worse. How soon
the solutions begin to get worse depends on the accuracy
of g(x). Larger errors in g cause the solutions to get
worse sooner, Also, the error in each of the approxi-
mate solutions tends to be an oscillatory function of x,
See for example, Ref, 8. Improvements to reduce the
oscillations in the desired function f{y) have been sug-
gested, Since the function g(x) is not known accurately,
we should state the problem as

fb K(x, y)f(y)dy = g(x) + €(x),

where €(x) is an arbitrary function except for some
condition on the size of €(x). In matrix form:

Af=g+e, (2)

In Eq. (2) Phillips described a method whereby a
controlled smoothing could be induced in the solution
obtained, by the inversion of the quadrature approxi-
mation to the integral equation.® The smoothest ac-
ceptable solution is defined in the sense of minimizing
the second-difference expression: ¥;(f;_; - 2f; +fZ%,)
with the auxiliary conditions: Af=g+¢ and 5;€?=con-
stant, The quantity to be minimized is then

2 (ra- 2+ fa eyt Yok,
i i

v being an undetermined multiplier. The solution ob-
tained was f=(A +yB)lg, B being a matrix related to
A" matrix elements by

-1 -1 -1 -1 -1
Bﬂ! = Ak-Z,J' - 4Ak'1,l + 6Ak Zhn 4Ak+1|j +Ak#2nf .

Both the sums of the squares of the errors §;€? and
the smoothness of the solution depend on y and it is on
these grounds that y is selected—solutions are found
for several values of y, The largest value for vy is se-
lected which still gives a value of §,€? consistent with
the experimental errors in g.

A modification of Phillips’ method and extension to
nonsquare A matrices was suggested by Twomey® and
it is this method which is used here. The expression
to be minimized is differentiated with respect to the f,
rather than the €;, resulting in )

0=Y-IZ€IA,H + (f;_z - 4f;_1 + 6_f‘ - 4‘f‘,1 +_f‘,,,2).
E

Elimination of € between Eq. (2) and the above equation
gives the solution of the form: f=(ATA +yB)'ATg
where AT =transpose of A, and B is the matrix
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1 -2 1
-2 5 -4 1
1 -4 6 ~4 1
0 1 -4 6 -4 1

= el

This method works when A is nof a square matrix,
that is, when the number of points in the quadrature
used is not equal to the number of experimental data
points in g(x).

To calculate the matrix A, we have to choose a quad-
rature method for the integral.” X f(x) were a function
which can be suitably approximated by a polynomial
in ascending powers of x, our integral would clearly
diverge if one of its limits equals infinity, as itis in
our case. If f(x) is such a function, it must therefore
be pre-multiplied, before integration, by a suitabie
weight function w(x) which remains positive throughout
the interval of integration and approaches zero faster
than f(x) tends to infinity at the singular limit, so that
the integral of w(x) f(x) converges. We adopt w(x)=e™
out of many other functions which could have served
the same purpose. Since one of our limits of integra-
tion is infinite, we pre-multiply the function by ¢™ in
order to ensure that the integral will actually remain
convergent for the limits 0 to », We can then use the
Gauss-Laguerre quadrature formula

foa ef(x)dx = f_: hyfla,)
3

where

P 1)
j—al[‘l’n (aj)]a ’

where L, = Laguerre polynomial of degree #, and g;
=roots of the Laguerre polynomial, The weighting co-
efficients %, and the abscissae g, for the Gauss—-Laguerre
quadrature for various # have been evaluated in the past
by different authors. ! We can therefore express our
integral of interest as

i " K(R, Io(RMR =" H,K(R,, TIo(R,),
0 &

where the weighting factors are H, =k, /e™j in terms of
the known weighting factors and roots of the Gauss~
Laguerre quadratures and the kernel is K(R;, T;)
=4na? ¢”¥ ©/¥T1 In matrix form, our Fredholm inte-
gral equation,

4q L eV RIRTo(RYR2 dR=06,(T),

can be cast into Ao =0, where ¢ =values of the chemical
shielding function o(R), o,=0,(7), experimental values
of the second virial coefficient for chemical shielding,
and

hy4ndd g7V (41 /R i

(A)U - e-a]'

in which 7| are the chosen temperature increments in
the range 240 to 440°K. We then can find the solution
o by solving

o={ATA+yB)'ATq,,

where A and B (previously defined) are known, o;, are
experimental points, and y is anundetermined multipler
whose value is chosen such as to be that value which
gives the smoothest function and still falls within the
magnitude of experimental error in oy.

An iterative procedure is set up in which y is chosen
{between zero and 3,€?), o is calculated and plotted out
to check for smoothness. As a final check, we insert
the obtained values of o back into the integral, evaluate
the integral numerically for each T;, and compare with
experimental points o,(7}).

RESULTS

The Xe potential function used here is that of Barker,
Watts, Lee, Schafer, and Lee.® The Xe-Xe potential
of Barker et al. was determined by fitting molecular
beam scattering data, the first eleven vibrational levels
of Xe dimer which have been observed, gas viscosities,
second virial coefficients, and the cohesive energy of
crystalline xenon at 0 K, all within experimental error,
It is undoubtedly the best available Xe~Xe potential.
The results of the inversion using this potential func-
tion are discussed below,

Using Twomey’s method®: We initially chose a La-
guerre polynomial of degree 15, thus there are 15
quadrature points, There are 21 points in 0,(7T) if in-
tervals of 10°K are taken, Taking smaller intervals
in ¢y did not lead to significant improvement, Thus a
matrix of dimension 21X 15 was set up. A computer
program which accepted the a; (roots of the Laguerre
polynomial and the abscissas for the Gauss—Laguerre
quadrature), the h, (weighting coefficients), both taken
from Salzer and Zucker, !° T; (absolute temperature),
and o,(7;) (the experimental values of the second virial
coefficient of chemical shielding at each temperature)
was written. The program sets up the matrix A and
B. For any input of the smoothing parameter y, the
vector (ATA +yB)™! A¥0,, which is the result of the in-
version process, is ¢, the calculated value of the func-
tion at the various quadrature abscissae, It was found
that abscissae points » <0.757, or > 1, 57, (7, for Xe
=4, 36 A) did not contribute significantly to the solution
but considerably extended the time used for matrix
manipulation. Likewise, it was found that taking small-
er temperature increments did not significantly im-
prove the solution, Gamma values up to 0. 01 were
tried, Since y has to be within the experimental er-
ror in 0,(7T), which we estimate to be less than 0, 005
ppm amagat™, use of y >0, 005 leads to over-damping.
The results for y=5x10"* are shown in Fig. 1 and in
Table I,

Since the raw data are collected for each sample of
given density as a function of temperature, the experi-
mental results on o, could just as well have been re-
ported in terms of do,/dT.
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Rire
r 0.8 1.0 1.2

L L i 1

FIG. 1. The chemical shielding function vs intermolecular
distance resulting from direct inversion of ¢;(T), withy=5
x10-* (@). The o(R) obtained by inversion of doy(T)/dT (©) is
also shown but the derivative gives no information in the re~
gion where V is close to zero, thus the point at 0. 9148y, is
connected to others by dashed lines. The solid curve is the
best ar;alytic function found: £(V32) =—1.8126x10~] V(R)/
Viry 4. :

doy(T) _, f‘” o(R)V(R) ~V(R) p2 4
0

dT - T2 P 31

Inversion of the experimental first derivative with re-
spect to temperature can be carried out by the same
method as for the experimental o,(7). Here, the re-
sulting o(R) is expected to be much more sensitive to
the form of the Xe-Xe potential, The results are
shown in Fig, 1 and in Table I for y=5x10,

The results of the inversion are sensitive to the
depth of the potential, A well depth (€) which is too
small, such as 221 K, an old value for the well-depth
for the Xe potential, gives rise to oscillations in the
empirical o(R), as the method tries to fit experimental
points with a poor V(R) and fails, The functional form
of the potential is not too critical. A Lennard-Jones
6-12 function with the same € and 7, parameters as
Barker et al’s potential function, gives an empirical
o(R) which is very close to that obtained using the po-
tential function of Barker et al. The root mean square
deviation of one from the other is 1. 42 ppm, which is
small compared with the value of o(R) at 0. 9947, which
is — 291 ppm,

The empirical o(R) function resulting from direct
inversion of the ¢,(7) data or the first derivative ap-
pears as a function with a minimum appearing at R=17,
and an apparent node at R =7, where V(R) vanishes.
The points at R<0. 87, are probably less reliable than
the rest, The contribution to the o, integral from this
region is very small owing to the very small values of
exp[ — V(R) /kT]within the temperature range explored
by the experiment, With the available data, the o(R)
obtained is probably good within 1.1 7,>R >0, 80 7,.
More information on o(R) could be obtained in the re-
gion R< 0, 80 7, if higher temperature data were avail-
able, However the temperature range that would have
to be covered experimentally is presently inacessible
since exp| — V(R) /BT falls off very rapidly as R be-

comes small. In order to obtain information on o(R
=0.75 7,) which is comparable to the present informa-
tion on (R =0. 80 7,), o, has to be measured up to
T=1126 K, since it is at this temperature that

exp[ - V(R)/kT] at R=0.80 7,, T=-440K is equal to that
R=0.75 7,.

This empirical chemical shielding function, o(R),
represents the difference between the chemical shield-
ing of a Xe nucleus in an interacting pair and that of a
Xe nucleus in an isolated Xe atom, Thus, ¢(R) should
theoretically approach zero as R goes to infinity. The
empirical chemical shielding function found here does
seem to have that limiting behavior.

The results of the direct inversion method came as
a surprise, since a monotonically decreasing o{R) such
as in Adrian’s model!! for ¢{R) was initially expected.
Examination of the numerical ¢(R) leads one to suspect
that o(R) may be related to some power of the absolute
value of V(R). Various functional forms of o(R), in-
cluding the family of functions | V(R)|" were assumed
for o(R), to see how well o,(T) can be fitted by such
trial shielding functions. A computer program was
written which accepts the functional form, normalizes
it such as to lead to a o, (at T=270) in agreement with
experiment, and carries out the integration to yield
o, at various temperatures, The functional forms which
were tried were

exp( - aR"), exp[- a(R - B)"], IV(R)I", n=1,2,...

as well as linear combinations of these. None of the
first two functions gave a satisfactory fit to the experi-
mental o,(7) although the ones which came closest in
these families of functions was exp(- 0.5 R*).

Most difficult to reproduce was the curvature of the
experimental ¢,(7). Functions which gave steep slopes
[high values of d ¢,(7)/dT] at the lower temperatures
(T < 300 K) could not reproduce the low values of

d 6,(T)/dT at higher temperatures (T>300K), A fair
fit to the experimental o,(T) was obtained with | V(R) |2,
This function, normalized to the experimental value at
270K, is

TABLE I. Numerical chemical shield-
ing function, in ppm, obtained by direct
inversion of experimental oy and its
first derivative, using Twomey’s

method.

R/7, from oy from doy/dT
0.754 +0, 07 +0. 04
0,772 +0.54 -1.69
0. 805 —98.39 ~—93.93
0.852 -45,27 —64,84
0.915 +6, 04 - 144,26
0.994 -291.51 —~169.70
1.090 -~27,24 ~-~20.35
1.205 -0.11 -1,02
1.340 +0,08 -0.03
1.498 +0.005 -0.0006
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AVE==1.8126x10" [ V(R)/ V()12

A monotomic function such as an exponential (or a
linear combination of exponentials) gives poor agree-
ment with experiment. As a typical example of an ex-
ponential function for o(R), we take Adrian’s theoretical
function, The o(R) he calculated gave a change of o,
over the temperature range 231 to 347 K of only 4. 13
%10™* ppm amagat™. deg™!,!! which is a much smaller
temperature dependence than the observed 14, 8x 10™
ppm amagat™!- deg™ over the same temperature range.
A modified theoretical o{R) reported later by Adrian,
of the form A exp[9, 801(R - ) /1], where #,=3.91 A,
likewise gives poor agreement with experiment, I
the value of A is allowed to be an empirical factor,
such as to have perfect agreement with experiment at
270 K, a more favorable comparison is possible. Even
s0, an exponential function such as Adrian’s cannot give
a satisfactory fit to the experimental data, The o,(T)
calculated using this function and Barker ef aql’s poten-
tial, falls well outside experimental precision, In par-
ticular, it is found that functions of simple exponential
form or a linear combination of exponentials, have no
possibility of giving rise to a range in ¢ [that is,

0,(T = 230) - 0,(T = 440)] as large as that observed ex-
perimentally, Functions of the form exp(- @R") and
exp| - a(R~ B)?], on the other hand, canbe parametrized
such as to give a large enough difference in ¢, between
230 and 440 K, but the 0,(7) curves calculated from
them suffer from a lack of curvature which is at odds
with the experimental data. Figures 2~4 show curves
of oy, doy/dT, and dZ¢,/dT? calculated using an expo-
nential function, These are to be compared with the
respective curves for the experiment as well as the best
analytic function found so far, f(V%). The agreement
between experimental ¢,(7) and its derivatives and the
curves calculated using f(V?) is only marginally ac-

fz?o 300 T 350 400 s
1 1 1

FIG. 2, Values of 03(T) calculated using trial o(R) functions of
the following forms: x=exp(—0.5RY), - - ~f(V?) and —+ —
Adrian’s A expl-9. 801 (R —R)/R,] all normalized to reproduce
(T =270 K). The experimental y(T) is drawn in as a solid
curve for comparison, in units of Hz amagat’i, shaded to indi~
cate the precision of the data.
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250 300 T 350 400
L 1. R 1
FIG. 3, Values of doy(T)/dT calculated using trial o(R) func-

tions: ~ ~ —f(VZ), —+ —the exponential. The experimental
doy(T)/dT is drawn in as a solid curve for comparison, in units
of Hz amagat- - deg™, shaded to indicate the precision of the
data.

ceptable. The precision and accuracy of the data is
somewhat better than the discrepancy between experi-
ment and the f{V?) results. The discrepancy between
the experiment and the exponential function is well out-
side the experimental accuracy. As noted earlier, the
curvature of o; as a function of T is very poorly repro-
duced by an exponential. f(V?) gives a closer approxi-
mation but is only marginally adequate, The inadequacy
of an exponential form is most apparent in the plots of
do,/dT and d%o0,/dT2.

DISCUSSION

Even though the temperature range over which we
have determined o,(T) is rather large (200 K) by ex-
perimental standards, it is still arelatively small range
by theoretical standards, since theoretically T goes
from 0 to =, The experimental temperature range
covered explores all portions of the R domain, but
some regions less effectively than others. We find that
higher temperatures sample more effectively the small-
er values of R (in the predominantly repulsive region)

3CI)O T 3?0

FIG. 4. Values of d%0y(T)/dT? calculated using trial o(R)
functions: ~ - -f(V?, —+ — the exponential, compared with
the experimental d2oi(T)/dT 2.
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whereas much lower temperatures sample the well re-
gion more effectively, We find that with the experimen-
tal temperature range of 220 to 440 K, we can obtain
almost no information about ¢(R) for R<0, 757, or
R>1,57,.

The nonmonotonic dependence of o(R) on internuclear
distance was surprising at first, However, upon com-
parison with other systems it appears to be quite rea-
sonable, For example, for two interacting F atoms, the
chemical shielding relative to the bare F nucleus, oy,

isolated F atom'?: 0p=+470.71x107®

F, molecule’®(R=1. 418 A): 0,=-232.6x10°

united atom (Ar)%: op=+1237. 641075,

Thus, relative to the isolated F atoms, the shielding
function o(R) has the following values:

o(R=<9=0, o(R=1.48 A)=-"703x10°,
o(R=0)=+1766,93x10°®,

Thus, for two interacting F atoms, the shielding func-
tion is nonmonotonic and has at least one node between
R=1.418 A and R=0. It is therefore not surprising
that the empirical o(R) which we have obtained for two
interacting Xe atoms appears to have a nonmonotonic
dependence on internuclear distance.

For the united atom formed from two Xe atoms,
Z=108, 0,=14688,7x10°, ' This was found by fitting
the calculated shielding values for Z=1 to 36 and
Z =42, 54, and 86 to a three-parameter formula and
extrapolating to higher Z. Withthe calculated o, =5638. 5
ppm for Xe atom, ! the value of ¢(R=0) for two inter-
acting Xe atoms should be:

a(R = 0) = og(united atom) — gy(isolated Xe atom)
=+ 9050, 2 ppm,

Since the empirical value of o(R=4. 3623 A) is around
- 200 ppm, this implies that o(R) for two interacting
Xe atoms does have at least one node between R=7v,
and R=0, The shape of o(R) for Xe, may not be unlike
that of the incremental polarizability of interacting
atoms, a{R), except for the sign, «(R) for a pair of
interacting rare gas atoms is negative at small R, has
a node in the vicinity of #;,, a maximum in the vicinity
of #,, and approaches zero as R goes to infinity, !°

The fair fit to the experimental o,(7) which is ob-
tained from a function of the form | V(R) |2 is probably
not significant. There is no a priori reason why the
shielding function for two interacting molecules should
be proportional to the square of the intermolecular po-
tential, Nevertheless, in the case of xenon, f(V?2) does
appear to have the right shape to give fair agreement
with the results of direct inversion of o,(T) data, The
o(R) function found by inversion is more peaked at
R~7, than f(V2) can be if it is to reproduce the ¢,(T)
at the higher temperatures, and f(Vz) does not have the
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same behavior between R=0.8 7, and R=0 as the o(R)
found by inversion. Nevertheless the fair agreement
shown in Fig, 2-4 suggests interesting possibilities.

It was noted by Barker ef al. that the reduced second
derivatives and reduced third derivatives at the mini-
mum of the best rare gas potentials are remarkably
similar.® This similarity of shape of V(R) is much
closer than one had any reason to expect except on the
basis of the empirical success of corresponding states.
Thus, if o(R) can be represented by some power of V(R)
then the reduced second virial coefficients of chemical
shielding for Xe-Xe, Xe-Kr, Xe-Ar, etc., should
likewise be similar, In the reduced form, X=R/7,,
V*(X)=V(X)/e, and T*=£,T/e, This leads to

-V*(X)

oy (T *) =4y} conste"f lV*(X) "exp ——— XZdx.
0

kT*

The integral is a constant, independent of the pair of
atoms (Xe-Xe or Xe-Kr or Xe-Ar) if the law of corre-
sponding states holds. Thus, if o(R) is at all repre-
sentable by a power of V{R), then we expect to find
nearly equal values of (0,(T)/»3€") at the same reduced
temperature, T* =#T/€ for Xe-Xe, Xe~Kr, and Xe-Ar,
We have found this to be approximately correct for
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