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The fundamental parameters that reproduce a nuclear
magnetic resonance (NMR) spectrum in gases, liquids,
and solids are the NMR chemical shift of the nucleus,
the indirect nuclear spin—spin coupling, and the nuclear
quadrupole coupling. All three quantities are tensors whose
directional properties are intimately related to the local
electronic structure at the nucleus; the third is trivially
related to the electric field gradient (EFG) at the nucleus,
so we consider the latter. The theoretical methods used in
calculating the shielding (which is measured as a chemical
shift relative to some convenient reference substance), the
J-coupling, and the EFG are considered here, also the
challenges in the accurate calculation of these quantities,
including relativistic effects, dynamics, and solid-state
effects. The sensitivity to intramolecular geometry, local
and long-range environment, and dynamic averaging that
make these NMR parameters particularly useful as probes
for analysis also provide major challenges in carrying out
theoretical calculations.

1 INTRODUCTION

The fundamental parameters that reproduce an NMR
spectrum in gases, liquids, and solids are the NMR chem-
ical shift of the nucleus, the indirect nuclear spin—spin
coupling, and the nuclear quadrupole coupling. All three

Encyclopedia of Analytical Chemistry, Online © 2006—2013 John Wiley & Sons, Ltd.

This article is © 2013 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Analytical Chemistry in 2013 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470027318.a6109.pub2



2 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

quantities are tensors whose directional properties are
intimately related to the local electronic structure at the
nucleus. In gases and in liquids where free tumbling of
the molecules bearing the nuclear spin leads to isotropic
averaging of these quantities, only a single number
determines the frequencies in the NMR spectrum: the
isotropic average value, the average of three components
along the principal axes of the tensor. In the solid state,
restricted motion permits the tensors to manifest all
the components, whether the sample is a polycrystalline
powder, an amorphous solid, or a single crystal.

There is a fourth parameter that is just as important,
the direct nuclear spin dipole—dipole interaction, which
depends directly and entirely on the third power of the
inverse of the distance between two nuclei, whether
bonded or otherwise, irrespective of the electronic
structure. It is a very important parameter in the solid
state because it depends on structure, and for protons
in a large molecule in solution, it provides the nuclear
Overhauser effect (NOE) that makes it possible to
elicit the geometrical structure of the nonfloppy parts
of the molecule. This direct dipole—dipole interaction
parameter is not considered in the theoretical calculations
described here because of the trivial mathematical
relationship between the parameter and the direct
through-space distance.

1.1 Absolute Shielding Tensor and Nuclear Magnetic
Resonance Chemical Shift

The NMR spectrum provides the chemical shift § relative
to a chosen reference substance in a chosen medium. The
definition of the chemical shift, usually expressed in parts
per million (ppm), is given in Equation (1)

V = Vpet

d = 1)

Vref

where v is the resonance frequency for the nucleus of
interest in the sample and v, is the resonance frequency
for the reference. The resonance frequency is determined
by a fundamental molecular electronic property called
the nuclear magnetic shielding, o, which is defined by
the Hamiltonian for the energy of a single nucleus N
possessing a nuclear magnetic moment Ly, in an external
magnetic field B, Equation (2) (where Z stands for
Zeeman and CS stands for chemical shift).

Hzics=—Wn - (1—-0)-B 2)
The magnetic field experienced by the nucleus at its

site is different from the applied magnetic field B because
of the small field B, arising from the circulations of

the electrons induced by the external magnetic field,
Equation (3)

(Blocal)a = (1 - G)aﬁBﬁa OL»B =X,y,Z (3)

thus, Equation (4)
Hes=+wmy -0 - B “4)

The term ‘“magnetic shielding” implies that the
magnetic dipole of a nucleus at that site would be shielded
from the full effect of the external field by the influence of
the induced electronic motions. For free atoms, o is always
positive because this circulation generates a shielding
field that opposes the applied field. In a molecule, the
presence of other nuclei hinders this circulation to an
extent that depends on the electronic distribution and may
even lead to a negative 0. Depending on the symmetry
of the electronic distribution at the nuclear site, some
of the components o,5 may be zero or identical. For
example, for a linear molecule there are only two unique
components, ¢, and o,,, where z is along the molecular
axis; these components are designated as o) and o,
respectively.

Theoretical calculations of the nuclear magnetic
shielding provide the entire shielding tensor ¢ on an
absolute basis, that is, with respect to a bare nucleus. The
chemical shift 8 expresses a difference in nuclear magnetic
shielding, Equation (5)

V — Vpef _ Opef — O

3

®)

Vref 1- Oref

Usually, but not always, o,.; can be neglected relative
to 1.0, so sometimes it is sufficient to use Equation (6),

0~ (Gref - 0) (6)

A negative chemical shift means that the nucleus located
at site A sees a more shielded (smaller) magnetic field
than does the nucleus in the reference substance, so that
the applied field has to be made higher in order to achieve
resonance with the nuclear spin energy separation at
site A.

We see from Equation (2) that the mathematical terms
in the total energy of a molecule that are bilinear in the
external homogeneous magnetic field B and the nuclear
magnetic moment p determine the nuclear magnetic
shielding ¢ for a nucleus in a molecule. The theoretical
calculation of NMR chemical shifts from first principles
therefore consists of collecting all such bilinear terms
in the energy of a molecule in the presence of both an
external magnetic field and a nuclear magnetic moment
located at the observed site to obtain the absolute
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 3

shielding tensor quantities o. A separate calculation is
required for the reference molecule. The NMR chemical
shift tensor can then be calculated from differences

between ¢ and o ;.

1.2 Indirect Spin—Spin Coupling Tensor

Usually, more than one nuclear spin is present in the
observed molecule. The interaction of nuclear spins N and
N’ is composed of a direct through-space dipolar coupling
(coupling of the bare nuclear magnetic dipole moments)
and an indirect interaction by way of the electrons. The
Hamiltonian for this interaction energy is, Equation (7)

Hpyg=wun - D+ - pn (7)

The direct dipolar coupling tensor D is symmetric,
with the principal components summing to zero (a
traceless tensor), and depends entirely on the distance
vector between N and N’. In an oriented system,
both D and J (the spin—spin coupling) contribute
to the observed spectrum. In a rapidly tumbling
molecule in solution, only the isotropic average of J
survives (Ji, = (1/3)[J, +J,, +J.]); the anisotropic part
averages to zero. A positive J results from an interaction
that minimizes the energy when the two nuclear spins
are antiparallel. The theoretical calculation of the J
tensor from first principles consists of collecting all such
bilinear terms in the energy of a molecule, as shown in
Equation (7).

1.3 Electric Field Gradient Tensor and Nuclear
Quadrupole Coupling Constant

All nuclei with spin / > 1/2 have an ellipsoidal distribution
of charge and an electric quadrupole moment eQ, where
e is the magnitude of the charge of an electron. Q is
positive if the nucleus is prolate (cigarlike), negative if
oblate (pancakelike). Q is an intrinsic property of the
nucleus. Energy is minimized by appropriate alignment
of an electric quadrupole in an EFG. At a nuclear
site in a molecule, there is an EFG when there is an
asymmetry in the charge distribution due to the electrons
and other nuclei. This EFG is represented by eq. The
energy of a nuclear quadrupole is quantized according
to its orientation in the EFG, even in the absence of
an external magnetic field. The electrostatic energy of
interaction between the electric quadrupole moment and
the EFG is expressed in terms of the nuclear quadrupole
coupling constant (e*Qq._,/h).

The magnetic dipole moment of a quadrupolar nucleus
is along the axis of symmetry of the nuclear charge
distribution. Thus, when a quadrupolar nucleus is placed
in a magnetic field so that the nuclear magnetic dipole

tends to align with the external magnetic field, the
interaction of the electric quadrupole with the internal
EFG at the nuclear site in the molecule affects the nuclear
magnetic energy levels. The tensor coupling between the
nuclear spin and the EFG eq at the nucleus is described
by the Hamiltonian, Equation (8)

eQ

Iy —=
Ho=Ix 2021 — 1)

eq - Iy ®)

Similarly to D, the EFG tensor is traceless: the isotropic
average of energy terms involving q is zero. Thus, in
liquids or gases, the positions of the lines in the NMR
spectrum are not affected by the nuclear quadrupole
coupling. In solids, the nuclear quadrupole coupling can
dominate the NMR spectrum and measurements of the
nuclear quadrupole coupling tensor in single crystals or
powders provide the EFG tensors.

1.4 Nuclear Magnetic Resonance Parameters in Gases,
Liquids, and Solids

In gases and liquids, isotropic averaging caused by the
rapid tumbling of molecules leads to observations of only
the isotropic part of ¢ and J, which are given by one-third
the sum of the principal components of these tensors.
At the same time, D and q being traceless means that
this sum is zero. Thus, in liquids or gases, the positions of
the lines in the NMR spectrum are not affected by either
the direct dipolar coupling or the nuclear quadrupole
coupling. To a good approximation, neither the chemical
shift nor the spin—spin coupling J is dependent of the
strength of the magnetic field. Actually, one has to be
quite specific in defining the environment of the nucleus
in both sample and reference because the NMR chemical
shift is very sensitive to these. For example, the chemical
shift of a 13C nucleus in molecule A relative to the usual
reference is tetramethylsilane (TMS) is §, =o(!3C, in
TMS, in CDCl; solution, x5, ¥pys: Xcper, » 300 K) — o(PC,
in A, in CDCl; solution, x», X1yps, Xcpcr, » 300 K).

It is important to specify completely all the variables
(e.g. mole fractions x 4, etc.) that determine the observed
chemical shift because the nuclear magnetic shielding
is so sensitive to factors of molecular structure and
environment. There is an intrinsic mass and temperature
dependence of the chemical shift, the spin—spin coupling,
and the nuclear quadrupole coupling because all three
are functions of the electron distribution, which in
turn is a function of the nuclear positions. As the
internuclear separations are weighted according to the
vibrational functions, the thermal average values of these
NMR parameters are dependent on the vibrational and
rotational state populations. Furthermore, all three NMR
parameters are dependent on the medium as each one is
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4 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

affected by the electronic environment, and the electron
distribution is affected by intermolecular interactions and
external electric fields. For protons, the medium effects
are generally small, whereas they can be quite large for
other nuclei.

In oriented molecules, such as in liquid crystal solutions,
polycrystalline powders, single crystals, or amorphous
powders, the tensor nature of the three NMR parameters
manifest themselves in the spectrum. In principle, one
can measure both the anisotropy and asymmetry of
the J tensor in rigid solids. However, the anisotropy
of J transforms similarly to the direct dipolar coupling,
thus the two interactions cannot be easily separated via
experiment. The anisotropy in J is predicted to become
more important for coupling constants involving heavier
nuclei, whereas D depends only on the internuclear
distance. Rapid magic-angle spinning (MAS) can be used
to obtain high-resolution spectra of solids by removing
the effects of the anisotropic terms, which in general have
a P,(cos0) dependence. The angle for which (3cos?6 — 1)
equals zero is the magic angle 54.74°. The terms that
give rise to the NMR spectrum of quadrupolar nuclei
include, in addition, a P,(cosf) dependence. Various
techniques have been used to determine these three
NMR tensors individually by experiment, including the
orientations of their principal axis systems. In solids,
the spinning sidebands observed in slow MAS NMR
spectra arising from tightly J-coupled spin pairs contain
valuable information about NMR parameters such as
the orientation of chemical shift tensors and the sign of
J. Multidimensional NMR spectra in solids permit the
separate determination of the isotropic chemical shifts
and the anisotropic line shapes that contain chemical
shift tensor and quadrupole coupling information for
each site.

Thus, we have seen that the parameters of an NMR
spectrum are related to fundamental molecular electronic
properties: the chemical shift is related to nuclear
magnetic shielding ¢ and the nuclear quadrupole coupling
is related to the EFG tensor eq. The indirect spin—spin
coupling J is itself a molecular electronic property.
Therefore, the general approach to the theoretical
calculations of these NMR parameters is through a
quantum mechanical calculation of molecular electronic
properties in the isolated molecule. Any medium effects
that have to be included, when they are large enough,
require, in addition, ensemble averages for a gas, liquid,
or solution. The calculation of the EFG is simplest, as
this is a property of the unperturbed electronic state of
the molecule. Since o and J are electronic properties
associated with the presence of magnetic fields and
fields generated by nuclear magnetic moments, their
calculation requires the general approaches that apply
to multiple perturbations. Furthermore, as the probe

nucleus senses electronic environments in the immediate
vicinity of the nucleus, high-level calculations that take
into account electron correlation have to be used for
all three parameters to achieve accuracy, and relativistic
corrections are sometimes necessary. Density functional
methods have been very successful and can compete
favorably with ab initio calculations.

2 GENERAL THEORETICAL METHODS

The mechanisms by which a nuclear magnetic moment
interacts with the molecular field and with external
magnetic or electric fields in the ground vibronic
state were originally articulated in fundamental work
by Ramsey.!™ For a unified approach to molecular
electronic properties, which explicitly shows where
the contributing terms arise and thereby also permits
the relationships between electronic properties to be
perceived, the reader is referred to the articles by
Michelot.*> The complete molecular Hamiltonian in
the presence of external magnetic and electric fields,
including all relevant interaction terms involving nuclear
magnetic moments (such as interaction between the
nuclear magnetic moment and the field induced at the
nucleus by the molecular motion, as well as those
related to the interaction of the magnetic moment
induced by this molecular motion with an external
magnetic field), treats electrons and nuclei as Dirac
particles. Relativistic effects are included from the
beginning and effects due to the finite dimensions of
nuclei are also taken into account, so that the nuclear
quadrupole coupling is a natural outcome.”) Using
this Hamiltonian with relativistic corrections for a free
molecule in a nondegenerate electronic state, a second-
order calculation in degenerate perturbation theory leads
to the explicit expressions for the contributing terms to
nuclear magnetic shielding o, indirect spin—spin coupling
J, nuclear electric quadrupole coupling, and all other
molecular electronic properties.®

2.1 Multiple Perturbation Theory

All the terms in the molecular Hamiltonian given by
Michelot® may be treated as perturbations added to
a zeroth-order part (the kinetic energy of the electrons
together with the total coulomb potential energy of all
the electrons and nuclei, assumed to have already been
solved). These include terms bilinear in py and B. In first
order, these lead to energy terms that are of the form
given by Equation (4), providing the formal expression
for the so-called diamagnetic part of the nuclear magnetic
shielding o. In second order, the terms in the molecular
Hamiltonian that are linear in py together with those
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 5

linear in B lead to energy terms that are also of the form
given by Equation (4), providing the formal expression for
the so-called paramagnetic part of the nuclear magnetic
shielding o. Michelot’s expression®® derived for nuclear
magnetic shielding o reduces to that given by Ramsey!?
if the origin of the molecular frame is placed at the center
of the nucleus of interest, the orientation being that of the
Eckart frame. Formally, the shielding term for nucleus N
is given by Equation (9):

2
o€ _
o4s(N) :—Som(0|§ {(rinTr0) TN 330¢5
k

2Z(lE — Ep~!

(rkNrkO)rkN73}|0

n#0
O|ZrkN LéxIn)( n|z O|0>
O|ZL0|n (n]Y “rn T Lin10)} 9)
k

The first index a(=x, y, z) is associated with the nuclear
magnetic moment and the second index B(=x,y,z) is
associated with the external magnetic field. L]ﬁo is the B
component of the orbital angular momentum operator for
the jth electron with respect to the chosen origin (the so-
called gauge origin) and ry is the distance vector between
the kth electron and the origin. Ly is the « component
of the orbital angular momentum operator for the kth
electron with respect to the nucleus N as origin. ryy is the
distance vector between the kth electron and the nucleus
N. m and e are the mass and charge of the electron, | is
the magnetic permeability of a vacuum. E stands for the
energy at states 0 and n (0 is the lowest state and » is an
index that runs through all the states of the molecule).
In Equation (9), the second term in the expression for
0,s(N), the paramagnetic term, is written in the so-called
sum over states (SOS) form, that is, in terms of the sum
>, over all excited states designated by the symbol
|n). In the symbol (0]Y, rkN‘3L%N|n), the operators for
the angular momentum and the distance vector for the
electrons are integrated over the ground state (0| and the
excited state |n).

In the same way, the terms in the molecular
Hamiltonian that are bilinear in py and pwy lead to
the energy terms that are already of the form given
by Equation (7) give rise to the first order part of the
indirect spin—spin coupling J, usually denoted by J(12),
The terms linear in by in the molecular Hamiltonian in the
nonrelativistic limit are three, labeled orbital, spin dipolar
(SD), and Fermi contact (FC). In second order, products
of these lead to various contributions to the spin—spin
coupling J. The product of orbital terms leads to JIP);

J(2) is sometimes called the diamagnetic orbital (OD)
contribution or J©©P) and J(P) the paramagnetic orbital
(OP) contribution or J(OP) because of the analogy with
the diamagnetic and paramagnetic parts of the shielding
tensor. The product of the SD terms leads to J® or
JOD) and the product of the FC terms leads to J©
or JFO By symmetry, there is only one nonvanishing
cross-term, resulting from the product of the SD and
the contact terms, referred to as J®. JFO is purely
scalar (isotropic), whereas the others are anisotropic.
The motional average of J® is zero, thus, all but J®
contribute to the observed isotropic average spin—spin
coupling for a rapidly tumbling molecule in solution.
All terms contribute to the observed NMR spectrum in
solids. The formal expressions for spin—spin coupling in
the nonrelativistic limit are shown below in terms of the
spin (S;) and orbital (L) angular momentum of the
(kth) electron, Equations (10)—(14):

2m
1 Ko
Jéﬁa) = g (4 ) NN ( 0|ZrkN [N

X [(renTin)dgp — T 110) (10)

38 = g’ (20 e Y CE, — Ey !

n

x {<0|ZrkN—3LgN|n)

k

x n|z ]N,|0 +cc (11)

J((Xzﬁ) =— %(2 B/ ( ) YNYN/Z( E, —Eo)

{0|Z?’rkN (Skrin) 7n — T SEIn)

Skl‘]N/) r?N, — r]N/73S]§|0> + cc

<”|Z 3rinv
i

(12)

1 /16mtpph 2
3) B
JaB___h< 3 ><4 )yNYN

X Z CE, - Eo)_l {(WZS (rin) Skln)
n k

x (18 (rin) 8P10) + cc (13)
j
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6 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

g _ _ 216mpgh, Bh(w’

2
w = 3 H> YNYN

x> CE, - Ep ' {<0|Za (rin) SiIn)
n k

X (H|Z3er/_5 (Skr]N/) r]‘-}N, — er/_3S§-3|0) + cc
J
(14)

where cc indicates the conjugate term in which the two
operators are switched. g is the Bohr magneton, yy is the
magnetogyric ratio for the nucleus N. 3(ry) is the Dirac
delta function which picks out the value at rj =0 in any
integration over the coordinates of the kth electron.

The coupling contributions J1 or J(OP) and J(I or
JOP) can be thought of as arising through paramagnetic
and diamagnetic currents induced in the molecular
electronic distribution by the nuclear magnetic moment
of one of the nuclei and coupling to the magnetic moment
of the other nucleus. The coupling contribution J© or
JFO can be considered as arising from the transmission
of spin information from nuclear spin to electron spin.
Owing to the finite density of the electron at the nucleus,
this information is passed on through the spin interaction
between electrons in the molecule and transmitted at the
other end via electron spin density at the other nucleus.
The dipole—dipole interaction between the nuclear and
electron spins lead to the coupling contribution J® or
J(SD).

The expressions shown here in Equations (9)—(14)
are cast in the form of sums over excited states, as
they were originally cast in the Ramsey formulation.
However, practical calculations are not actually carried
out in this form for several reasons. Multiple perturbation
theory is more conveniently carried out by using directly
the first-order perturbed wavefunction or the first-
order density matrix. In other words, for the multiple
perturbation of the external magnetic field and the nuclear
magnetic moment, the nuclear magnetic shielding may be
calculated by first calculating the first-order density matrix
of the molecule in the external magnetic field alone,
using the operator ZjL]f.SO, and with this the integrals
that account for the second perturbation imposed by the
nuclear magnetic moment are then evaluated, using the
operator Y, rin > L%y Or, independently, one could first
find the first-order density matrix of the molecule in the
presence of the nuclear magnetic moment alone, and with
this, evaluate the integrals that account for the second
perturbation imposed by the external magnetic field.
A physical interpretation is that the nuclear magnetic
shielding arises from the interaction of the magnetic

moment of the nucleus with the magnetic field due
to the current density induced by the external magnet
or, equivalently, from the interaction of the current
density induced by the nuclear magnetic moment with
the external magnetic field. The most common approach
is to construct first the electronic response induced by
the external magnet and then study its interaction with
various nuclei in the molecule. In current practice, the
shielding and the J coupling are evaluated as derivatives
of the electronic energy with respect to the magnetic
field and with respect to the nuclear magnetic moments,
which permits the use of efficient techniques that have
been developed wherein the derivatives are calculated
directly from analytically derived expressions, the so-
called analytic gradient or analytic derivative approach.

Note that written in the form of Equation (9), the
diamagnetic part of the shielding is very easy to calculate,
as it requires an average over the electronic ground-
state function only. On the other hand, the second-order
term, that is, the paramagnetic contribution, requires
knowledge of how the presence of the external magnetic
field changes the electronic wavefunction of the molecule
and the integration requires that this knowledge be
especially accurate in the immediate vicinity of the
nucleus of interest.

The calculation of the EFG tensor does not require a
perturbation treatment as this is one of those electronic
properties that can be calculated as an average over the
electronic ground-state wavefunction. The zz component
of the EFG tensor is given by Equation (15).

q., = Zej(3zj2 — rjz)r]f5 (15)
J

where ¢; is the charge of the jth particle (the electrons,
other nuclei, external charges) in the system and the z
axis is in the nuclear-fixed coordinate system, that is along
the nuclear axis of spin. The spin axis of the nucleus is
allowed to rotate with respect to the laboratory frame of
reference and the nuclear wavefunction is a product of
the intrinsic Wy, n. and orientation W, ,, functions for
spin angular momentum described by quantum numbers

I and M, Equation (16).
Yiotal = Y7 m Vintrinsic® (electrons other,

nuclei, external charges) (16)

For a nucleus in a molecule oriented in the laboratory
framework, the components of the field gradient tensor
are qyy, dyy. 4zz- The principal field gradient tensor
component g, for the nucleus in the molecule is related
to the laboratory values through the direction cosines
between the axes, as follows, Equation (17):

.. = (Cx.)’qxx + (Cy.) qyy + (C2)%qz, (17)
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 7

In the absence of a magnetic field, the energy
of a quadrupolar nucleus in the EFG can be
obtained by averaging the electric quadrupole charge
over the wavefunction W .c, averaging the squares
of the direction cosines over W,,, and averaging
qzz=2_; ej(Sij - rjz)rj_5 over the wavefunction &
(electrons, other nuclei, external charges) expressed in
the laboratory frame. The average of the direction
cosines over W, , leads to an energy expression that
is proportional to [3M? —I(I+1)] in the absence of a
magnetic field.

In the presence of a magnetic field, the magnetic dipole
moment of a quadrupolar nucleus, which lies along the
axis of symmetry of the cigarlike or pancakelike nuclear
charge distribution, interacts with the magnetic field.
Thus, when a single quadrupolar nucleus in a molecule is
placed in a magnetic field, the interaction of the electric
quadrupole with the internal EFG at the nuclear site in
the molecule leads to a series of 2/ resonance lines. Thus,
a spin /=1 nucleus in an axially symmetric EFG gives a
pair of lines separated by [¢*q,,Q](3/2) or more explicitly,
by [€?q,,0](3/2)(3cos*0 — 1)/2, where 6 is the angle that
the principal symmetry axis of the EFG makes with the
external magnetic field. The pair of lines is centered at
a frequency that provides the shielding tensor. Both the
shielding tensor and the EFG tensor in the XYZ (i.e.
the laboratory-fixed) coordinate system can be obtained
from an oriented molecule in the solid state. Equation (17)
permits the determination of the tensor in the xyz (i.e. the
molecule-fixed) coordinate frame system. Since the EFG
is a traceless tensor, the isotropic average is zero. Thus,
in the liquid phase the positions of the lines in the NMR
spectrum are not affected by the nuclear quadrupole
coupling, although information about the latter can still
be obtained from quadrupolar relaxation times.

Theoretical calculations of the EFG tensor in the
molecular frame of an isolated molecule involves
evaluating the quantum mechanical average of the
operator ., =" ; ¢;(3z* — r;*)r;~> over the ground-state
electronic wavefunction for the molecule, where j runs
over all electrons and the origin is set at the nucleus
in question. To this electronic contribution must be
added the nuclear contribution, by evaluating a similar
algebraic expression in which ¢; are the charges of the
other nuclei and z; and r; are their positions in the
molecular framework with the origin at the nucleus in
question. For molecules in a liquid, EFG contributions
from neighbors have to be included, which may require
a quantum mechanical average or an approximate sum
over fixed partial charges.

Reference 6 is a valuable resource.

2.2 Gauge Origin Problem in Calculations of Chemical
Shift

In deriving the expressions shown here, the external
magnetic field B itself does not appear in the
Hamiltonian. What appears instead are the magnetic
vector potentials associated with the magnetic fields,
Equation (18):

B=VxA (18)

where V is the gradient vector, that is,
B,=(3A,/dx) — (dA,/dy), for one component. While B
is determined uniquely if A is given, there is, unfor-
tunately, an ambiguity because there is no unique A
that produces a given B. Any transformation that takes
a particular A into another functional form that also
reproduces the same B when Equation (18) is applied
is called a gauge transformation. A mere translation
of the origin of the coordinate system can do this
transformation; therefore, the set of problems associated
with this ambiguity is called the gauge origin problem.
Physically, there should be no problem at all, as an
arbitrary choice of coordinate system should not affect
an observable property. Similarly, theoretically there
should be no problem at all; any physical quantities
resulting from any calculations involving A or B or
physical quantities related to them must be gauge
invariant, provided the calculations are done exactly.
In fact, calculations are not usually done exactly when
one uses an incomplete set of basis functions in which
to do the calculations. It has been shown that if the
Hartree—Fock equations are solved exactly (which is
only possible in the limit of a complete basis) the total
current density is gauge independent, as is the nuclear
magnetic shielding o, while the two parts which are
usually called the ‘“‘diamagnetic” and ‘‘paramagnetic”
contributions in Equation (18) are not individually
gauge invariant. In practice, calculations are not carried
out in the Hartree—Fock limit, so the results of such
calculations are not gauge invariant. When a single
origin is chosen common to all electrons in the molecule
in the definition of Zij’O (and ry), the method is
the so-called “‘common origin” coupled Hartree—Fock
method.

Consider an isolated atom. The external magnetic field
induces a current density. The current density vector is
orthogonal to the magnetic field vector B and to the
position vector r;. For a magnetic field in the z direction
the current density vectors lie in planes parallel to the
xy plane, following the tangents of concentric circles.
Here, the natural choice of origin is the position of the
nucleus; this leads to a vanishing paramagnetic current
density. The current density is entirely the diamagnetic
part and corresponds to a local field that opposes the
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8 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

external field B. Moving the origin off-center to a position
other than that of theof the nucleus would make the two
parts more difficult to evaluate, but the sum should still
be the same as before, so there is no reason to adopt
an alternative origin. In molecules, however, there is
no choice of origin that can make the paramagnetic
part vanish. Changing the location of the origin, in the
definition of rjy and }_; L?O in Equation (18) leads to
differing amounts of positive and negative terms. The
worst choice gives very large not quite canceling terms.
Clearly, the inner shell electrons in a molecule behave
the way they do in the free atom, so that it makes sense
to choose the nucleus as the origin when calculating
integrals over orbitals centered on that atom. However,
that same origin would be a bad choice for orbitals
centered on another atom, whereas choosing the nucleus
of that atom as origin would present a favorable atomlike
calculation for its own inner electrons. Thus, it becomes
clear that in order to avoid calculating large positive
and negative terms that imperfectly cancel in a single-
origin method, some method of using distributed origins
would present a practical advantage in computing nuclear
magnetic shielding for nuclei in molecules.

The theoretical calculations of nuclear magnetic
shielding did not become generally practical even
for very small molecules until (i) various ways of
using distributed origins were devised and (ii) efficient
algorithms for evaluating second-order properties were
developed. The various schemes for using distributed
origins are known by the acronyms LORG (localized
orbital/local origin),”” IGLO (individual gauge for
localized orbitals),® GIAOs (gauge-including atomic
orbitals),”” and IGAIM (individual gauges for atoms
in molecules).!” The success of distributed origins
comes from the avoidance of calculating large imperfectly
canceling contributions. In the first two methods, gauge
factors are applied to localized molecular orbitals
instead of every atomic orbital. The LORG and IGLO
methods introduce an approximation in the form of the
closure relation and LORG uses commutation rules and
identities. Both have been very successful, although there
is the problem of lack of uniqueness in the localization
method used. The GIAO method uses gauge factors on
every atomic orbital. Although this method of distributed
origins had been introduced much earlier than all the
others, it was not until the efficient implementation
by Peter Pulay using the analytic gradients approach
that it became widely successful. The convergence of
calculated o values with increasing quality of basis
set employed appears to be faster with the GIAO
method. GIAOs (sometimes called London orbitals)
constitute a physically motivated, compact basis set for
magnetic calculations. The field-dependent exponential
factor in the London orbital depends on the origin of the

coordinate system. A displacement of the origin changes
the phase factor of an orbital centered on a nucleus by a
factor that is independent of the electronic coordinates.
Thus, the calculated properties such as shielding remain
unaffected and methods based on the use of such orbitals
are gauge invariant. The most important property of the
GIAO method is not this formal translational invariance
but that the GIAO (the atomic orbital multiplied by
the gauge factor) itself represents to first order the
eigenfunctions of a one-electron system that has been
perturbed by an external magnetic field. GIAOs thus
incorporate the bulk of the effect of the magnetic field at
the basis function level. The IGAIM approach amounts
to constructing the induced current density distribution
of a molecule from its constituent atoms, following the
highly successful atoms-in-molecules concepts of R.F.W.
Bader. It differs from LORG, IGLO, and GIAO in that
the gauge origins are determined by properties of the
charge density in real space rather than by the behavior
exhibited by the basis functions in the Hilbert space
of the molecular wavefunction. All these distributed
origin methods (GIAO, IGLO, LORG, IGAIM) and any
single common origin method should lead to identical
results at the Hartree—Fock level in the limit of a
complete set of basis functions. The differences lie in
the rate of convergence as the number of basis functions
is increased. The various distributed-origins methods
converge toward the Hartree—Fock limit faster than
while using a single origin. Common origin calculations
require much larger basis sets to provide nearly origin-
independent results comparable to the results from
distributed-origin methods.

The use of GIAO orbitals for calculating magnetic
properties involving an external magnetic field is
now standard in many software packages for routine
calculations of shielding and is usually preferred to other
procedures for imposing gauge—origin independence.

2.3 Challenges in Calculations of Spin—Spin Coupling

There are no gauge problems in spin-spin coupling
calculations; as seen in Equations (10)-(14), only
operators with their origin at the nucleus (r;y and
rin > LYy) appear. The calculations of spin—spin coupling
have their own associated challenges. As can be seen in
Equations (10)—(14), the nature of some of the indirect
spin—spin coupling mechanisms requires calculations
with uncoupled spin states. Thus, the spin-unrestricted
approaches that are normally applied to open shell
systems have to be used, otherwise the poor description
of triplet excitations give rise to large errors. When
there is a nonsinglet ground state with lower energy
than the restricted Hartree—Fock singlet ground state,
the calculations of the JOP) and J¥O terms require
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 9

higher order calculations than the self-consistent field
(SCF). The Coupled cluster (CC) theory at CCSD
(coupled cluster singles and doubles) level leads to
much improved accuracy, although instabilities occur at
CCSD(T) (coupled cluster singles and doubles with some
triple excitations) level and one needs to go further, to
CC3, to avoid them. Furthermore, the usually (not always)
dominant FC contribution in Equation (13) requires that
the spin densities are highly accurate at the location of
the nucleus, and this is not easily achieved when the
basis functions used are the standard Gaussian form,
having no cusp at the nucleus. This requires that basis
set augmentation functions with tight (steep) exponents
be added to the uncontracted basis sets, which are
subsequently recontracted. On the other hand, the OP
term has a linear dependence on momentum, which
indicates the importance of the addition of more diffuse
functions to the basis. The SD, OD, and OP terms are
of importance when considering the anisotropy of the J
tensor. In particular, the cross-term between SD and FC
is known to dominate the anisotropy of one-bond J. For
molecules containing atoms no heavier than carbon, the
FC contribution is generally the largest term. It comprises
almost the entire coupling — especially for the molecules
involving only single bonds. One-bond J (in particular
the FC component) has a very strong dependence
on internuclear distance, thus vibrational averaging is
important for accurate calculations. At present, the state
of the theory is not yet at the level where, unlike chemical
shifts, the most accurate calculations are about the same
level of accuracy as the experimental values.

Relativistic effects influence spin—spin couplings much
earlier (at lower atomic numbers) than other properties,
owing to the strong dependence of J on the electronic
structure at the position of the nucleus and its immediate
vicinity. In fact, Equations (10)—(14) are valid only for the
point nucleus in the nonrelativistic limit. For heavy nuclei,
it is necessary to start out with the relativistic treatment
described in Section 2.6, as the nonrelativistic theory
may lead to unrealistic calculated values.'D In relativistic
theory, the indirect spin—spin coupling constant does not
partition into the same terms as in Equations (10)—(14).

2.4 ADb Initio Methods

In this section, we consider approaches to the calculation
of NMR parameters from electronic structure theory
from an approximate electronic wavefunction. In the
next section, we consider calculations of these parameters
from an approximate electronic density using density
functional theory (DFT). Ab initio methods of quantum
chemistry are routinely applied to the study of molecular
electronic properties, particularly those properties that
are associated with molecular spectra, such as NMR

spectra. Indeed, widely available electronic structure
calculation software packages have become an important
tool for NMR spectroscopists for characterization and
analysis. Even so, in ab initio calculations of NMR
parameters using wavefunctions, there are several things
that have to be considered: (i) the level of theory that
is used (without, with some, or with substantial electron
correlation, with or without relativistic corrections), (ii)
the set of basis functions. In addition, (iii) the desired
degree of averaging over molecular configurations (with
or without rovibrational averaging, with or without
medium effects), (iv) the availability of tensor data, and
(v) the availability of absolute shielding test data in the
case of chemical shifts, also have to be considered. In
the case of spin—spin coupling, there is very limited
information beyond that of the isotropic average values
obtained in solution. Only in rare cases is there anisotropy
information, so that the only viable additional tests are
those of isotropic effects on spin—spin coupling. In the
case of 13C chemical shifts, the amount of detailed
tensor information from single crystals and polycrystalline
powders is so rich that the level of theory, and size of basis
sets needed, and the accuracy of geometrical structure
data required to achieve agreement with experiment
has been established (by D. M. Grant and associates)
for a large variety of carbon site types. The level of
theory used in ab initio calculations of NMR parameters
had to improve continuously with the challenges posed
by attempts to match experimental results for specific
small molecules, as we shall see below (Section 3.1).
Here, as opposed to the DFT method, the progression
of steps for systematic improvement toward increasing
accuracy of the electronic description is well established.
A review of the evaluation of NMR parameters from
the various standard ab initio models, providing the
basic equations needed for the calculation of magnetic
properties in each case, with computational aspects
related to the practical application of each, is available
from Helgaker et al.'? They examine and compare
the different methods systematically, analyzing their
relative merits and deficiencies. The quality of the
results is determined by the level of theory chosen
for the calculation: Hartree—Fock (HF or SCF) is for
a single electronic configuration, multiconfiguration self-
consistent field (MCSCF) for a subset of configurations;
there are various levels in the hierarchy of perturbation
theory improvements to the Hartree—Fock model (the
Mgller—Plesset (MP) theory at various orders, MP2, MP3,
etc.), as also in polarization propagator methods [random
phase approximation (RPA), second-order polarization
propagator approximation (SOPPA)], and various levels
in the hierarchy of the CC approach (CCSD with singles
and doubles, CCSDT, etc.). The ultimate method, the
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10 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

full configuration interaction (FCI) can be used only for
extremely few (2—-6) electrons.

The Hartree—Fock and RPA represent the first
level of calculation and are the same approximation
for frequency-independent properties such as NMR
parameters. Calculations beyond this level are necessary
when electron correlation contributions are significant.
Since moving up to the next level of theory can become
expensive, when calculating NMR parameters for a set
of systems, it is prudent to estimate the magnitude of the
corrections needed to improve the accuracy. A calculation
to estimate the importance of electron correlation to
the nuclear shielding should be done. The involvement
of multiple bonds or presence of lone pairs at the
nucleus of interest is usually an indication that correlated
methods have to be used. Furthermore, an estimate of
the magnitude of the effects of averaging over molecular
configurations is needed in order to determine whether it
is sufficient to do a calculation for a single molecule at a
fixed geometry in a vacuum. An estimate of the magnitude
of relativistic effects on shielding is needed when next
neighbors are heavy atoms (particularly halogen atoms),
or when the NMR nucleus is a heavy nucleus.

In the finite field method, the NMR parameter (e.g. J)
is obtained by differentiating the energy in the presence
of the nuclear magnetic moments (or in the presence
of the nuclear moment and the external magnetic field
for o) with respect to the nuclear moments (or with
respect to the nuclear moment and the external field
for o). The addition of a finite field to the total energy
expression is a simple extension of existing computer
codes for electronic structure calculations and is one
of the standard methods for calculating higher order
molecular electronic properties such as the nonlinear
polarizabilities, for example. Thus, the finite field method
is easily used, without additional theoretical development,
to study the effects of electron correlation on properties.
The drawback is that a finite field calculation has to be
carried out for each tensor component of the property.
Thus, while the purely isotropic FC term of J is easily
calculated with finite field methods at various levels
such as many body perturbation theory (nth order
term) (MBPT(n)) and CC methods, the tensor types
of mechanisms given in Equations (10)-(12) and (14)
require several calculations to yield the various xx, xy, xz,
yy, 2z, components. On the other hand, direct methods
such as the polarization propagator method use analytic
expressions that provide all components of the tensor
with one calculation. Pulay introduced analytic derivative
theory into shielding calculations as a natural extension
of his pioneering work in ab initio calculations of force
constants and equilibrium geometries. In an MBPT(n)
calculation, or alternatively the MP nth-order term (MPn)
perturbation series, all energy contributions less than or

equal to order n in perturbation theory are included.
On the other hand, CC methods, in addition to being
consistent to a particular order in perturbation theory,
include certain classes of energy contributions summed
to infinite order. The same kind of infinite summations
are also included in polarization propagator methods
(RPA, SOPPA, etc.). Thus, SOPPA is not equivalent
to the MBPT(2) (second-order MBPT) or MP2 (MP
second-order term) level of approximation. The CC
approach, by construction, guarantees a hierarchical
expansion converging to the FCI limit. Consequently,
CC calculations provide a benchmark against which
other more cost-effective methods (e.g. DFT methods)
are measured and validated. The CC reference state
including singles and doubles excitations (CCSD) and
triples (CCSD(T) or CCSD-T) has been introduced in
shielding calculations by Gauss; CC has been used in
calculations of JFC) by Bartlett et al.

For chemical shifts, the calculations using the SCF
wavefunctions, appear to give quite good results for
CH, and other saturated '3C sites, and even olefinic
sites. The major problems that have been discovered
for carbon are those environments (e.g. C=0, —C=N,
and >C=0) for which electron correlation is extremely
important. Electron correlation is important for 3'P
calculations in molecules where a lone pair is on the
phosphorus, even when only hydrogen atoms are attached
to it. The SCF level has been found to be insufficient
even for calculations using very large basis sets to
reproduce the anisotropy of the 3!'P shielding in the
molecule PH;.!'® In these cases, some level of post-
Hartree—Fock theory is necessary in order to obtain
meaningful results.

Shielding calculations including electron correlation
effects at the level of MBPT(2) or MP2 may be carried
out with a conventional common origin or may be
used with any of the distributed origin approaches. An
alternative approach to second-order electron correlation
effects called SOPPA belongs to the family of propagator
techniques, but is different from and not equivalent
to MP2. Many quantum mechanical software packages
provide MP2 level of wavefunctions. These are supposed
to take care of the dynamic correlation effects and hence
to improve results for closed shell systems where SCF
already gives good results. When the degree of electron
correlation contribution to the shielding is small, this
level is usually sufficient to provide useful comparisons
with experiment. When the difference between SCF and
MP?2 results is not small, then it may be necessary to go
up to the MP4 level, with the corrections at MP2, MP3,
and MP4 often alternating in sign. Despite its successes,
the inherent problem with this approach is the slow
convergence of the perturbation series for those systems
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 11

(with strong correlation effects) where MBPT(2) or MP2
level is no longer adequate.

MCSCF wavefunctions may sometimes be necessary
for calculations of shielding, when the electronic ground
state cannot be adequately described by a single
electronic configuration, i.e. a single Slater determinant.
A multireference calculation can properly account for
strong correlation effects if closed shell SCF is too
poor as an initial approximation (e.g. in O, NSF,
SO,, N,0O; molecules). SCF methods completely fail
for such systems. MCSCF wavefunctions generated
using complete active spaces (CAS) and restricted
active spaces (RAS) may be used with any of the
distributed origin methods, spawning such methods
as MCSCF/GIAO and MCIGLO (multiconfiguration
individual gauge for localized orbitals). The MCIGLO
formulation was presented formally by van Wullen and
Kutzelnigg, and applied to appropriate cases such as
carbenes and dinitrogen oxides. The dinitrogen oxides
(NO),, (NO)(NO,), and (NO,), have strong correlation
effects that affect the shielding tensors. The N and
170 shieldings have been measured in these molecules
and the effects of correlation are particularly interesting
in that they are of both signs. In the nitroso nitrogen,
the electron correlation effect is to enhance deshielding,
while in the nitro nitrogen the correlation effects are to
increase shielding. Thus, in (NO)(NO,) the correlation
effects are large and opposite in sign for the two types of
N. Correlation contributions to the isotropic °N shielding
range are —558 ppm in (NO),, +61 ppm in (NO,), and
-63 and +116 ppm in (NO)(NO,).

If different electronic configurations dominate the
wavefunction at different geometries, the calculation
of the shielding surface also requires a computational
method based on a multiconfiguration wavefunction.
The MCSCF approaches are hampered by the same
sort of problem because rather large active spaces
are needed to obtain satisfactorily converged results.
While static correlation effects on shielding arising from
near degeneracies are efficiently treated by the MCSCF
methods described above, MBPT (also known as MP
perturbation theory) has been used to treat dynamical
correlation effects.

One of the most successful approaches for the
treatment of electron correlation is provided by CC
theory. While ultimately based on a single determinant
reference function, the exponential parameterization
of the wavefunction ensures an efficient treatment of
electron correlation. In particular, dynamic correlation
effects are accounted for with nearly quantitative
accuracy at a fraction of the cost needed to obtain
similar precision with MCSCF approaches. Among
the various schemes suggested in the literature, the
CCSD approximation in which single and double

excitations are considered in the cluster operator,
has proven especially useful in calculations of other
molecular properties. CC approaches can be considered
as infinite-order generalizations of the MBPT series. The
implementation of GIAOs for the CCSD approach has
been carried out by Gauss and Stanton,™ and further
augmented by a perturbative correction for connected
triple excitations CCSD(T).1® The principal advantage
of the GIAO method is the ease with which high-
level treatments of electron correlation may be handled
by straightforward application of analytic derivative
theory.

MCSCF/GIAO calculations for triple-bonded systems,
in particular, HC=N, HN=C, MeC=N, and MeN=C,
show that the electron correlation effects are large
for the triple-bonded nuclei, especially the component
perpendicular to the triple-bond axis, and largest for the
terminal nucleus. For example, the electron correlation
contribution to ¢, for '3C shielding is +47 to +54 ppm
in the -N="C nuclear sites and to ¢, for nitrogen
shielding is +87 to +79ppm in the —C=N sites.1?
These MCSCF/GIAO results do not compare as well
with experiments as do the calculations by Gauss using
the CCSD method. 1319

The ultimate level of theory would be FCI, but this is
only possible for very small systems and is rarely used.!®

The same general methods for multiple perturbations
are used for calculating spin—spin couplings, with the
difference that there are no gauge origin problems in
spin—spin coupling calculations. All but the J(OP) 4 J(OP)
mechanisms mix triplet states with the unperturbed
electronic singlet ground state. Thus, the unrestricted
Hartree—Fock (UHF) method is sometimes used to
generate the unperturbed electronic ground state, even
for closed shell molecular systems such as CH,. The
extent to which electron correlation needs to be included
depends on the system, just as in shielding calculations.
The same molecules that are found to be pathological
cases in shielding calculations also pose problems in
spin—spin coupling calculations. The uncorrelated finite
field SCF calculations, which are the same approximation
as SCF and RPA calculations, in most cases give
good results for o, while this is not often true for J.
The JOP) term in spin—spin coupling, similar to the
diamagnetic part of o, is generally easy to calculate;
good results can be obtained with low-level electronic
correlation included and using moderately sized basis
sets. The sum over all excited states in J(OP) extends
over singlet excited states as most of the common ground
states that chemists are interested in are singlet states.
However, in the J®P) JFO and JOPFO) expressions,
the excited states have different spin multiplicity from
the ground state. Because there is a state of triplet
symmetry either very close to or sometimes below the
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12 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

restricted Hartree—Fock singlet ground state for many
molecules, these mechanisms for spin—spin coupling are
very poorly described at the SCF-level of approximation.
This problem affects spin—spin coupling calculations,
but not calculations of . Geertsen and Oddershede.!”
initiated a resurgence of interest in accurate ab initio
calculations of coupling constants by using polarization
propagator methods. The SOPPA has been found to
yield reliable coupling constants in some instances. When
higher accuracy is required, CCSD reference states
(limited to single and double excitations) have been
used within the polarization propagator method.?%?D
Midway between first (RPA) and second-order is HRPA
(higher random phase approximation), which has been
used to calculate one- and two-bond coupling constants,
Lor2J(CC) in ring systems. MCSCF wavefunctions are
appropriate in cases where the SCF calculations predict
unrealistic coupling constants, such as in (pathological)
molecules involving multiply bonded nitrogens. The
method is MCLR (multiconfiguration linear response).
MCSCEF functions have been used for the hydrides of
group IV (C, Si, Ge, Sn).?» Bartlett et al. have used
finite field methods to calculate the FC mechanism of
spin—spin coupling using various levels including electron
correlation, up to CCSD, and Stanton and Gauss*® have
used the analytic second- derivative approach.

The HD molecule is the smallest molecule for which
the NMR indirect nuclear spin—spin coupling constant
may be observed and at the same time a molecule for
which ab initio quantum-chemical calculations may be
performed at the most advanced levels of theory. For this
molecule, the most complete electron correlation (FCI)
nonrelativistic calculations including all four components
of the tensor are possible.*® For HD, a large zero-point
vibrational correction of 1.89 Hz and a smaller but non-
negligible temperature correction of 0.20 Hz, arriving at
a theoretical isotropic value of 43.31(5) Hz at 300 K.
Of this total value, the FC, SD, OP and OD terms are
98, 1, 2, and —1%. The experimental value is 43.26(6)
Hz in the gas phase, extrapolated to zero density in
He gas.

2.5 Density Functional Methods

One method of including electron correlation effects is
through DFT. DFT methods are based on a theorem that
states that for a scalar potential V(r) the ground-state
N-electron density uniquely determines the potential
that gives rise to it. The total electronic energy is
a unique functional of the density p(r).?> Although
constructing an accurate approximation to the kinetic
exchange correlation functional G[p(r)] is a formidable
task, it need only be done once because the form of G
is independent of the form of V(r). Approximations are

required because the functional is not known exactly,
but these approximations are getting better and better.
Developments in exchange correlation functionals have
made DFT methods viable alternatives to those of
conventional quantum mechanical calculations. DFT
combines the promise of accurate results (i.e. more
accurate than Hartree—Fock-level quantum calculations)
with cheaper computation (because it scales up to more
electrons less steeply than conventional methods that
include some electron correlation). Several approximate
functionals of the electron density are in common use
and are relatively successful in prediction of molecular
structure, and are known to yield geometries and energies
of at least MP2 quality.

The difficulties of calculating magnetic response
properties using DFT arise in two major ways. The first is
intrinsic to all DFT methods, because only approximate
functionals are available and they are deficient in various
ways. NMR parameters show up these deficiencies most
glaringly because of their extreme sensitivity to the
electron distribution in the immediate vicinity of the
nucleus. The second difficulty is that in the presence
of a vector potential (when magnetic fields or magnetic
moments are present), the functionals of both the current
density and the electron density are needed, thus a current
density functional theory (CDFT) is the appropriate
theory. A current-dependent DFT has been derived by
Vignale et al.?® On the other hand, more commonly,
a generalization of the Kohn—Sham density functional
theory (KSDFT) has been used to obtain magnetic
responses using only the functional of the electron density;
the current density part of the calculation is not included.
This is by far the most commonly used calculation
method. It remained to be shown by Grayce and Harris
that when the magnetic field is produced by a constant
applied field and a single nuclear magnetic dipole, the
current density is a functional of the electron density.
Furthermore, they showed that in the linear response
regime, the current density functional depends on the
zero field electron density. As a consequence, magnetic
responses in the linear regime are solely functionals of
the electron density in the absence of a magnetic field.
Grayce and Harris?”-?® call this the magnetic field density
functional theory (BDFT). The problem is that in all DFT
approaches, only approximate functionals are available
as of now, and the magnetic-response DFT approaches,
whether CDFT, KSDFT, or BDFT, all suffer from this
same difficulty.

There are several independent formulations of DFT of
shielding. Initially, a large number of DFT calculations
were carried out without including the effects of the
current density, using a local density approximation
(LDA) in an SOS method and an IGLO method of local
origins for shielding tensor calculations. Lee, et al.*”

Encyclopedia of Analytical Chemistry, Online © 2006—-2013 John Wiley & Sons, Ltd.

This article is © 2013 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Analytical Chemistry in 2013 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470027318.a6109.pub2



PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 13

derived equations within the Kohn—Sham formulation
of DFT for calculations of nuclear magnetic shielding
tensors with GIAO basis functions using CDFT, including
the use of a local exchange correlation functional
that depends on both the electron density and the
paramagnetic current density. To put the various DFT
formalisms and calculations in context, they applied their
working expressions to the systems HF, N,, CO, F,,
and H,O. By doing computations using conventional
atomic basis functions versus GIAOs basis functions,
using various local functionals of the density in popular
use, such as the exchange functional of Becke with
the correlation functional of Becke-Lee-Yang—Parr
(BLYP) and others, with and without including the
current-dependent functional proposed by Vignale et al.
with or without the ad hoc correction of Malkin et al.
Some very useful comparisons are provided by Lee
et al.?® They of course found what is already well
known: using GIAOs leads to better results for o than
using conventional (gaugeless) atomic basis functions
whether employing ab initio or DFT methods. They
found that including the current-dependent functional
proposed by Vignale et al. gives only small corrections.
They also established that DFT and CDFT methods
exhibit general difficulty in describing multiply bonded
systems such as N, and CO. An important observation
is that calculations using local functionals of the density
give severely deficient eigenvalues. To overcome this, a
more accurate functional must be developed. Since the
Malkin correction is to modify the energy denominators,
this has the effect of shifting the incorrect eigenvalues
already noted above. Indeed, direct comparisons by Lee
etal. using various functionals with and without the ad hoc
Malkin correction lead to a significant improvement in the
CO case. They also found that, unlike in the HF molecule,
exchange terms are significant in the CO molecule and
the current density terms are no longer negligibly small.
The general conclusions are that the use of local density
functionals is a major deficiency and overwhelms the
small current density corrections.?” The best results
for CO in the Lee et al. formulation of CDFT/GIAO
appear to come from the hybrid B3LYP (Becke, three-
parameter, Lee—Yang—Parr) functional®*3! combined
with the Malkin correction.®? Thus, in spite of what
appears to be a lack of solid theoretical foundation,
the ad hoc Malkin correction gives very promising
results.

There are several other implementations of DFT in
shielding calculations, all of which use only current-
independent exchange correlation functionals, such as the
GIAO-based DFT calculations introduced by Schreck-
enbach and Ziegler® and Pulay et al.®¥ In practice,
the calculations in the Ziegler DFT/GIAO implementa-
tion employ Slater-type orbitals as atomic basis functions

(unlike most computations, which use Gaussian-type
basis functions). Pulay et al. have developed a DFT/GIAO
that uses the analytic derivative theory. Compared to
the Hartree—Fock case, the only new quantity is the
first-order exchange correlation term. In the Pulay imple-
mentation, these terms are evaluated by the same Becke
numerical integration scheme they use for the exchange
matrix elements themselves. Other implementations use
DFT with the general CSGT (continuous set of gauge
transformations) method of Keith and Bader®> (wherein
the current is determined through the definition of a
CSGT, a separate gauge origin to calculate the current
JD(r) at each point rin real space).

How well does DFT predict absolute shielding?
DFT accounts for correlation effects implicitly in the
exchange correlation functionals used and thus might
be expected to give superior results in comparison
to SCF calculations for a given GIAO set of basis
functions, in those molecules such as CO, N,, NNO,
and HCN where electron correlation effects on shielding
are important. Absolute shieldings obtained using the
gradient-corrected functionals are consistently better
than SCF in these molecules, although the improvement
is small in some cases. Using a basis set that is sufficient
to predict accurate shifts using GIAO/MP2 theory,
various DFT functionals consistently predict chemical
shifts that are too deshielded compared with experiment.
The absolute shielding results are too deshielded by
10-20ppm for 3C, by 6-40ppm for N, and by
30-40ppm for O in the selected molecules where
the absolute shielding results are known. Anisotropies
are even worse. The successful wide applicability of the
DFT method for calculating ¢ lies in its applications
to molecules with large numbers of electrons, where
the accurate CCSD(T) calculations are not feasible and
even MP2-level calculations are prohibitively expensive
and impractical. CCSD(T) is the “gold standard” of
computational quantum chemistry, against which other
methodologies are typically compared. The test of any
theoretical method for calculating o is the comparison of
the results with the benchmark CCSD(T) calculations
of Gauss for a set of small molecules at the same
fixed geometries. Benchmarking DFT calculations of o
by using accurate CC calculations have been carried
out by Gauss et al.®® The accuracy of the calculated
coupled-cluster constants is established by a careful
comparison with experimental data, taking into account
zero-point vibrational corrections. Coupled-cluster basis-
set convergence is analyzed and extrapolation techniques
are employed to estimate basis-set-limit quantities,
thereby establishing an accurate benchmark data set of
all nuclei (H, Li, C, N, O, F, Al, P, and S, 72 nuclear
sites in all) in 28 different molecules, many of which
are ‘“‘pathological” cases in terms of the importance of
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14 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

electron correlation and where relativistic effects are
expected to be small. This level of theory, at which the
calculated values are of a quality comparable to that of
most measurements, was therefore selected as reference
for the benchmarking of the various DFT functionals. The
DFT approximations generally underestimate shielding
constants, especially the LDA and general gradient
approximation (GGA) functionals. The origin of this
underestimation can be traced to a poor description of
the paramagnetic contribution to the NMR shielding. This
term has an inverse dependence on the occupied-virtual
Kohn-Sham eigenvalue differences that tend to be too
small. The paramagnetic contribution therefore becomes
too negative and the overall shielding constant too
low. Inclusion of some Hartree—Fock exchange leads
hybrid DFT approaches [e.g. the popular B3LYP and
PBEO (Perdew-Burke—Ernzerhof hybrid) functionals]
to outperform the LDA and GGA functionals, apart from
the KT2 functional of Keal and Tozer. Even using the
electronic density from the CCSD(T) wavefunctions does
not lead to improved accuracy, therefore suggesting that
the current density contributions of CDFT (mentioned
above) are non-negligible and should be included in a
consistent DFT treatment of NMR parameters.

The DFT method has severe limitations for the
calculations of spin—spin coupling as well, which are
connected to the inability of the presently available
exchange correlation functionals (LDA and GGA) to
produce the highly accurate spin densities required to
describe properly the FC term for molecules containing
atoms lying at the right of the periodic table and
containing lone pairs. The JOP) term is the easiest to
calculate, a straightforward numerical integration in the
DFT method because this contribution depends only on
the unperturbed ground-state density. The calculations
of the JOP) and JFO terms, just as in the ab initio
calculations of J, require the spin-unrestricted approach
that is normally applied to open shell systems. The
JSD) contribution is the most time-consuming and is
usually neglected in DFT calculations of J because it is
usually smaller than the error in the JFCO) calculation
by this method. A fully analytical implementation of
J including all four terms for use with LDA, GGA,
and hybrid functionals has been provided by Helgaker
et al.?73® Improved results will require a better exchange
correlation functional to describe the spin polarization
more precisely. A parameterized functional trained
to reproduce a set of gas-phase, isotropic, hyperfine
coupling constants in nonsinglet radicals might be a good
start.

Despite its limitations, DFT method is widely used
in calculations of NMR parameters; the advantage of
DFT is that it can be routinely applied to very large
molecules, providing results of comparable quality as for

small molecules. This is the reason that DFT has been
the workhorse of computational chemistry for several
decades; the major drawback is that systematic routes to
improve the exchange correlation functionals have not
been found.

2.6 Relativistic Calculations

Although all electrons are affected by relativity, the effect
is most pronounced for those molecular properties whose
quantum mechanical operators involve steep inverse
powers of radial distance of the electron, such as r—3
or even a delta function at the nucleus. As seen in
Equations (9)-(14), the nuclear magnetic shielding and
the indirect nuclear spin—spin coupling have these forms
of the operators and should be more strongly affected by
relativity than properties that depend predominantly on
valence electrons such as the electric dipole polarizability.
A relativistic treatment is therefore often needed for
NMR parameters, spin—spin coupling — in particular, for
those molecules that involve heavy nuclei. It is well known
that relativistic effects are very important in the study of
heavy elements.

Instead of the Schrodinger equation, one has to solve
a many-electron generalization of the four-component
Dirac equation; these are the four-component methods
based on the Dirac—Coulomb Hamiltonian. The magnetic
perturbation operators are linear in the vector potentials
of A, and A,, in the Dirac Hamiltonian, while they
are quadratic in the Schrodinger Hamiltonian. There-
fore, there is no resemblance between the relativistic and
nonrelativistic expressions for the diamagnetic shielding.
Fully relativistic calculations are very time-consuming
even at the Dirac—Hartree—Fock level. There is also the
relativistic polarization propagator approach for calcula-
tions of J and shielding by Oddershede et al.*” Including
electron correlation at the same level as is available in
nonrelativistic theory is even more demanding. Rela-
tivistic CCSD and configuration interaction singles and
doubles methods have been developed by Nakatsuji
et al.®® but is practical only for small molecules. To
include electron correlation efficiently within a rela-
tivistic four-component treatment, a DFT approach for
the calculation of nuclear shieldings and J has been devel-
oped by Malkin et al.*D and Pecul et al.*? There are
also two-component methods, “exact”®) and approxi-
mate. Of the former, there are several approaches;*¥
of the latter, some are based on the regular approxi-
mation [e.g. the popular ZORA (zeroth-order regular
approximation) method] or on the Douglas—Kroll-Hess
Hamiltonian. Finally, there are approximate methods
that employ perturbative corrections on top of a nonrel-
ativistic treatment.
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PARAMETERS, CALCULATION OF NUCLEAR MAGNETIC RESONANCE 15

The relativistic effects on shielding may be considered
in three parts. One is the direct effect of the relativistic
contraction of s and p inner shells and the relativistic
SCF expansion of d and f shells on the diamagnetic
contribution. The contraction of the s and p shells
leads to larger values of (r,N~3) and (r,x~!). The
essentially constant relativistic effect on the diamagnetic
contribution from the core electrons can be a large
correction but it hardly changes as the atom is
compared from one molecule to the next. This is
of little concern while taking differences, namely,
the chemical shifts. Another relativistic effect is the
indirect effect of this s and p contraction and d
and f expansion within the Hartree—Fock scheme, an
effect that varies from one molecule to the next.
Both of these relativistic effects are scalar or “‘spin-
free” in nature. A third effect is that of introducing
the electron spin—electron orbital angular momentum
coupling, the so-called spin—orbit terms. To calculate the
additional contributions to the nuclear magnetic shielding
associated with spin—orbit interactions, the latter has
been approached approximately by a nonrelativistic
treatment with the spin—orbit operator added on as a
perturbation. These corrections can be large for nuclei
whose immediate neighbors are atoms that have large
values of spin—orbit coupling constants, e.g. the heavier
halogens. Both the spin-free relativistic term and the
spin—orbit terms can be important and they can couple
with each other, as they do in "’Hg shielding in mercury
halides. One way of approximately including relativistic
effects in nonrelativistic calculations is to use relativistic
effective core potentials. The so-called normal halogen
dependence of chemical shifts (increasing shielding on
substitution of neighboring atoms by CI, Br, I, in that
order, sometimes called the HALA effect of heavy atom
on light atom), which had previously been attributed
to relativistic effects,® has been accounted for entirely
by the spin—orbit contributions centered on the halogen
atoms in approximate calculations of shielding of 'H,
13C, 2%Si, "'Ga, and '°In nuclei in the respective halides
by Nakatsuji et al.*® These approximate calculations
have established the importance of the spin—orbit terms
for shielding of nuclei having CI, Br, and I neighbors.
However, calculations of heavy atom shielding are not
yet on a sound footing at the level of relativistic theory
used here. Furthermore, the number of electrons involved
is large and basis sets used are far from saturated so
that it is not yet possible to have good nonrelativistic
baseline values against which it may be possible to judge
quantitatively that the relativistic approximations used
are bridging the gap between nonrelativistic calculations
and experiment. The second problem, which is just as
important, is the lack of experimental absolute shielding
data in the gas phase for such heavy nuclei. This leads

to comparisons of theoretical values with solution data
where solvent effects may even bring some doubt as to
the actual chemical species being observed. The problem
is particularly severe with the calculations involving bare
anions of In, for example, rather than neutral species.

The electron-coupled nuclear spin—nuclear spin
coupling J is itself a purely relativistic phenomenon.
However, starting from a relativistic Hamiltonian such as
the Dirac—Coulomb—Breit Hamiltonian, and neglecting
the small components of the four component func-
tions, the expressions for the spin—spin coupling tensor
in the nonrelativistic limit (Equations 10-14) had
been derived® and used in nonrelativistic calculations
of J.

Aucar and Oddershede®” formulated a fully rela-
tivistic ab initio theory of the spin—spin coupling in
its most general form within the polarization propa-
gator approach. They neglected the Breit interaction
to derive the formulas that look very much like the
nonrelativistic expression for spin—spin coupling in the
propagator approach, except that the elements involve
integrals of the full four component wavefunctions. The
large component of the relativistic wavefunction is the
nonrelativistic wavefunction. One relativistic expression
replaces the nonrelativistic J©P), JSP) and JFO terms.
The theory leads to the nonrelativistic expressions in
Equations (10)—(14) in the limit that the speed of light
goes to infinity. Two-component relativistic methods for
J have been implemented at the Hartree—Fock and
DFT levels of theory.®® As an early pioneer in the
relativistic treatment of J, Pyykko!D derived a rela-
tivistic analog to Ramsey’s theory, using a relativistic
nuclear Zeeman hyperfine Hamiltonian as a pertur-
bation; implementation has been limited to one-bond
couplings.*” The study of relativistic corrections to
spin—spin coupling is not as advanced as for shielding;
systematic improvement is hampered by some contri-
butions diverging when basis sets are extended. There
are as yet few four-component fully relativistic calcu-
lations of J for a large set of molecules. In addition,
many reported calculations include relativistic contri-
butions piece-meal, as scalar effects only or spin—orbit
effects only, whereas it would be desirable to treat all
contributions at the same level of theory. A further
problem in J coupling calculations is that there is no
consensus on the appropriate nuclear model to use.
Four-component approaches use finite Gaussian-type
charge distributions; two-component approaches use
point charge models. Little is known about how the
nuclear model affects the quality of relativistic J. Never-
theless, it is well established that when at least one of
the coupled nuclei is a heavy nucleus, or when a heavy
nucleus is on the coupling path, relativistic effects cannot
be neglected. A popular method for heavy nuclei is
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16 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

ZORA-DFT, which is an approximate two-component
approach.

Relativistic calculations in applications to EFGs have
received less attention; for EFGs, there are scalar
and spin—orbit contributions also. Four-component CC
calculations have been carried out for Hg in HgX, (with
X = Me, Cl, Br, 1).09 Two-component formalisms using
exact methods of decoupling positive and negative energy
solutions have been applied to EFGs, but additional
corrections need to be made to correct for so-called
picture change effects, which are sometimes large for
EFGs.“4

A perspective article on relativistic effects for chemists
by Autschbach®D is an accessible and generally useful
guide, with particular examples for NMR shielding and J
coupling. The comprehensive review Relativistic Compu-
tations of NMR Parameters from First Principles by
Autschbach is likewise accessible with many examples.®?
A unified approach to four-component relativistic treat-
ment of magnetic properties and a logical systematic
classification of existing methods of calculations of NMR
parameters within relativistic quantum chemistry has
been presented by Kutzelnigg and Liu.>® In this rigorous
treatise, they critically explore various approaches to
four-component calculations in a general context and
also the commonly used approximate methods such as the
Douglas—Kroll-Hess approximation and the ZORA in
context. This places the various methods from a confusing
melange in the literature onto a common consistent
framework, which makes sense for finding relationships
between methods and making comparisons among them.

2.7 Calculations in Periodic Systems

So far we have considered theoretical approaches for
calculations of NMR parameters in a single molecule
or a cluster of small molecules in a vacuum, where the
system involves a finite number of electrons and nuclei.
In such calculations, a systematic improvement of the
accuracy of the results is possible by using a hierarchy of
computational approaches all the way up to the ultimate
“platinum standard”: FCIL. On the other hand, periodic
systems, such as crystalline solids, have translational
symmetry that can be exploited in calculations, while
doing calculations on a system that is closer to the actual
solid materials on which solid-state NMR observations
are made.

The operators responsible for shielding and indirect
spin—spin coupling are very short-ranged, involving at
worst 7~ for the electronic distance from the nucleus.
Why then do we need a solid-state approach for
the calculation of NMR parameters? The quantities
the operators act on — wavefunctions and electronic
charge density — are influenced by the long-range

atomic configurations and electrostatics of the material.
This is true for all NMR parameters: o, J, EFG.
The particular way in which a protein is folded in
its native state, the particular configuration of atoms
that are remote from the observed nucleus in terms
of bond connectivity, influences the dihedral angles in
the immediate vicinity of the observed nucleus, thus
affording a measurable discrimination between the alpha
carbons of the many different alanines in the same
protein and in different proteins. The sensitivity of
the NMR parameters to these slight differences in
chemical environment are an advantage for NMR as
an analytical method and at the same time pose a
challenge for accurate calculations of these parameters.
Slight differences in bond distances and angles give
rise to measurable changes in the NMR parameters
for nuclei in solids, particularly the nuclear shielding,
thus permitting distinction between different polymorphs
of the same chemical compound in molecular solids,
or between different crystal morphologies in covalent
solids. J coupling across hydrogen bonds engendered by
proximity between distinct molecules in the solid state, for
example, J coupling across an intermolecular hydrogen
bond, has been observed. These can only be calculated
using a solid-state approach.®¥

How should one deal with these translationally periodic
networks? Density functional approaches to electronic
structure of solid materials had been available for some
time, but the first approach for calculating NMR chemical
shifts in solids was developed by Mauri®; this method
could be applied to periodic systems such as crystals,
surfaces, or polymers and, with a supercell technique,
to nonperiodic systems such as amorphous materials,
liquids, or solids with defects, or isolated molecules.
This method and its improved versions are in wide use.
Subsequently, several alternative DFT methods under
periodic boundary conditions have been proposed and
applied to the same benchmark solids as Mauri for direct
comparisons. See the similarities and differences between
these emerging methods in a review, Ref. 56

Mauri overcame the inherent difficulty that the position
operator that explicitly enters the perturbed Hamiltonian
for NMR is not well defined for periodic systems,
and the task of computing the induced current is
complicated by the fact that the magnetic field breaks
translational symmetry. Improvements to the original
approach have been incorporated by Mauri et al.®?
in the version called the GIPAW (gauge-including
projected augmented wave) method. The method uses
pseudopotentials. In the pseudopotential approach, only
the valence electrons are explicitly considered, the effects
of the core electrons being integrated within a new
ionic potential. The method reconstructs all-electron
density close to atomic nuclei, correctly accounting for
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electrons in this region. Fourth-row elements, transition,
and rare-earth metals require very large numbers of plane
waves to accurately describe the valence wave functions.
For these, more efficient pseudopotentials have been
designed, ““ultrasoft” pseudopotentials, which are as soft
as possible in the core region and require a minimum
number of plane waves for full convergence and GIPAW
has been reformulated to make use of these.®® Mauri
et al.®” have also developed a calculation of relativistic
effects on chemical shifts in solids using the ZORA, and
a theory of J in solids.®® To compute the EFG tensor
in a periodic system is less demanding than calculating
either the shielding or indirect coupling tensors, as it
requires only knowledge of the ground-state charge
density, ground-state wavefunctions and the position
of the nuclei in the unit cell. For quadrupolar nuclei,
both the EFG and chemical shift tensors are required
in the interpretation of the spectra, thus, executing both
calculations within the same computational framework in
GIPAW is convenient. With the availability of reliable
pseudopotentials, GIPAW method has been widely used
in the solid-state NMR community as a routine tool for
structural assignment/interpretation and understanding
of nuclear site electronic structure, particularly in cases
with several nuclear sites. An accessible review of the
theory for all three NMR parameters is given by Yates
and Pickard,®" and a review of calculations of J in solids
by Yates.®® GIPAW and the other methods for periodic
systems permit calculations of NMR parameters “in situ”
for covalent solids, ionic solids, strongly hydrogen-
bonded solids, proton-conducting molecular crystals, and
polymorphs where slight differences in NMR parameters
and other properties arise from small differences in
crystal-packing forces for the same chemical structural
formula.

3 CALCULATIONS OF NUCLEAR
MAGNETIC RESONANCE CHEMICAL
SHIFTS

3.1 Comparison of Various Computational Methods
Using the Same Set of Test Molecules

Which method would be best to use for calculating
NMR chemical shifts? The answer depends on the
question being asked. Is the chemical shift to be used
to discriminate between two or more proposed chemical
structures? Is the goal to verify a particular structure? Is it
to determine whether the molecule is fluxional, whether
it forms a complex, on the basis of the NMR chemical
shifts? Is it to assign the multitude of peaks observed
in a crystalline sample? Sometimes, we just want to
understand what it is about the electronic structure that

gives rise to an observed chemical shift or its temperature
dependence. Depending on the accuracy that is required
to answer the question being asked, a particular method
and level of calculation and a particular size of basis
set may be sufficient. It is not always necessary to use
the most accurate method and the largest basis set. But
first, we compare methods across the board, using several
benchmark molecules, in order to see the level of accuracy
that may be expected.

We present some comparisons of absolute isotropic
shieldings calculated using GIAOs in Tables 1 and 2.
The calculations are for a fixed geometry, and therefore
should be compared with the value for the equilibrium
geometry of the molecule, o,, whereas the room
temperature average value in the limit of zero density,
0¢(300K), is for a rotating vibrating molecule. Electron
correlation effects on the individual components of
the tensor differ and so are partly washed out in the
isotropic average value (which is one-third the sum of
the principal components of the tensor). Nevertheless,
these comparisons are revealing. Here, we included the
various levels of many body perturbation expansion
MBPT(2), MBPT(3), MBPT(4) used by Gauss,®® the
CCSD approximation augmented by a correction for
triple excitations (CCSD(T)) by Gauss et al.,*® an FCI
calculation for BH molecule by Gauss and Ruud,'®
and the MCSCF results using GIAOs from Ruud
et al.17%> We also include the results from DFT using
the simplest LDA functional and the KT2 functional
of Keal and Tozer, and earlier calculations in the
generalized gradient approximation using the exchange
functional of Becke with the correlation functional of
Lee—Yang—Parr DFT/BLYP from calculations using
the different implementations of Pulay et al.?» and
Schreckenbach and Ziegler®?

Examination of Tables 1 and 2 permit the following
conclusions. For the hydrides HF, H,O, NH;, and CH,,
electron correlation effects described by triple excitations
are small, amounting to <1ppm for the nonhydrogen
nuclei. The effects for proton shieldings are not shown
in the tables, but they are even smaller, of the order
of 0.1 ppm. MBPT(4), CCSD, and MCSCF all provide
an adequate treatment of electron correlation effects for
these simple systems. Furthermore, the agreement with
experiment is very good. It has been found in systematic
studies of a large number of '*C chemical shifts that
MBPT(2)-level results are much closer to experiment
than CCSD results.©® It appears that MBPT(2) benefits
from a fortuitous but consistent error cancellation, while
CCSD (which is theoretically more complete and is in
principle a more reliable approach) does not. Triplet
excitation effects are considerably more important for
the multiply bonded systems CO, N,, and HCN. The
magnitude of the triplet excitation corrections (2—6 ppm)
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Table 1 Comparison between absolute shielding calculations, all using GIAOs and experiment?

Method 3Cin CH, BCin CO 13Cin HCN >N in NH, PNinN, SN in HCN
DFT/LDA® 193.1 -20.3 65.3 266.3 —91.4 —56.7
DFT/KT2" 195.2 74 86.0 264.5 —59.7 —19.4
DFT/BLYP* 187.8 -122 71.7 259.4 —80.6 —43.5
DFT/BLYP! 191.2 -9.3 915 262.0 -72.9 8.4
SCF® 194.8 -255 70.9 262.3 —1124 -50.7
MBPT(2)° 201.0 10.6 87.6 276.5 —41.6 -0.3
MBPT(3) 198.8 —42 80.0 270.1 -722 -26.2
MBPT(4)° 198.6 41 84.3 269.9 —60.1 —14.9
MCSCF 198.2f 8.22f 86.762 — -522f 2.632
CCSDP 198.81 —0.95 83.4 268.8 —64.7 -16.9
CCSD(T)® 199.2 4.0 85.7 270.8 —58.8 -12.7
Expt. o, 195.0+1 0.9+0.9 821409 264.54+0.2 —61.6£0.2 —20.4+02
Emp. o,/ 1987 33 84.4 2733 —57.3 -102

40, values are the ones that should be compared with the calculations. All shielding values are in ppm.

YGauss et al.(?% (KT2 is a functional designed by Keal and Tozer.(®®)

Pulay et al.?¥

dZiegler et al.(?

°Gauss®

"Ruud et al.®»

Barszczewicz et al.(?)

"These are absolute shielding values o, which are isotropic averages in the gas at the zero-pressure limit. They correspond to the thermal average
for an isolated molecule.

IThe estimates of the vibrational corrections have been subtracted from o, to obtain the empirical value o, (the value for a rigid isolated molecule at
its equilibrium molecular geometry) with which calculations are to be compared. See Gauss et al.®® for the references for experimental data and
vibrational corrections.

Table 2 Comparison between absolute shielding calculations, all using GIAOs and experiment?

Method 70 in H,0 70in CO F in HF YFinF, 'Hin BH "B in BH
DFT/LDAP 3348 -87.5 416.2 —2842 — —
DFT/KT2" 329.6 -57.1 412.4 —211.0 — —
DFT/BLYP* 326.4 -73.6 410.9 -277.1 — —
DFT/BLYP? 3315 -68.4 412.5 —-282.7 — —
SCF* 328.1 -87.7 413.6 —167.9 2421 —261.25
MBPT(2) 346.1 -46.5 4242 —170.0 24.12 —220.67
MBPT(3) 336.7 -68.3 417.8 -176.9 24.14 —201.92
MBPT(4) 3375 -52.0 4187 —174.0 24.22 —184.18
MCSCF! 3353 -38.92 419.6 —136.6 — —174.838
CCSDP 337.0 -56.8 419.7 -1752 24.74 —166.64
CCSD(T)P 338.0 -53.6 420.2 —182.1 24.62 —170.46
FCI¢ — — — — 24.60 —170.08
Expt. o 323.6+0.3 —62.740.3 409.6+ 1 —232.8+1 — —
Emp. o' 337.83 -57.0 4217 -192.8 — —

4o, values are the ones that should be compared with the calculations. All shielding values are in ppm.

PGauss et al.®® (KT2 is a functional designed by Keal and Tozer.®®)

Pulay et al.®¥

dSchreckenbach and Ziegler ¢

°Gauss®¥

fRuud et al.®»

2Gauss and Ruud®®

DThese are absolute shielding values o, which are isotropic averages in the gas at the zero-pressure limit. They correspond to the thermal average
for an isolated molecule.

iThe estimates of the vibrational corrections have been subtracted from o, to obtain the empirical value o, (the value for a rigid isolated molecule at
its equilibrium molecular geometry) with which calculations are to be compared. See Gauss et al.(% for the references for experimental data and
vibrational corrections.
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Table 3 Calculated 1*C chemical shifts (in ppm) relative to
13CH,, and experimental values in the gas phase

A o (CH,) — 6(A), calculated Expt.
SCF? MBPT(2)?
CH;CH;4 11.7 13.5 14.2
H,C=CH, 135.8 130.3 130.6
HC=CH 81.8 782 77.9
CH;F 71.6 79.7 78.3
CH,OH 52.0 59.3 58.5
CH,NH, 31.9 36.6 36.8
CH,;CHO 33.5 38.7 37.9
(CH;),CO 322 37.0 37.1
CH,CN 438 7.9 7.4
CO 224.9 190.4 194.1
CO, 147.9 138.0 136.3
H,CO 205.0 194.8 —
CH;CHO 211.3 200.3 201.8
(CH;),CO 218.8 207.3 208.2
HCN 127.5 114.2 113.0
CH;CN 135.1 125.4 121.3
CH,=C=CH, 240.0 227.5 224.4
CH,=C=CH, 81.7 80.6 79.9
CF, 116.4 137.1 130.6
C¢Hq 140.6 137.5 137.9
aGauss©”

b Jameson and Jameson.©®

for these systems leads to calculated results that are closer
to experiment. For the F, molecule, inclusion of triple-
excitation corrections leads to a change of about 15 ppm
and brings the calculated value closer to experiment.
Results for F, atlower levels of calculation do not provide
satisfactory agreement with experiment. Except for the
F, molecule, GIAO/MCSCEF calculations using very large
active spaces (only those are shown in Tables 1 and 2)
provide results comparable to CCSD. It has been found,
and is obvious in Tables 1 and 2, that the DFT method
consistently overestimates the paramagnetic term leading
to too much deshielding for these benchmark molecules.
The SCF value is good enough for CH,, NH;, and HF
molecules to agree reasonably with the thermal average
value (as the neglect of electron correlation effects in
these and most molecules is compensated for by the
neglect of rovibrational averaging), whereas the SCF level
of theory is clearly inadequate for the multiply bonded
CO, HCN, and N,, and also for H,O and F,.

The benchmark test molecules shown in Tables 1
and 2, except for CH,, are specifically chosen as examples
that present problems of electron correlation, especially
in BN, 70, and "F shielding. Observe in Tables 1
and 2 the slow convergence in some molecules, faster
in others, of the series SCF, MBPT(2), MBPT(3), and
MBPT(4). Observe also the consistent improvement over
SCF afforded by the approximate exchange correlation
functionals used in DFT calculations, especially for CO,

N,, HCN. Observe also how close CCSD(T) results
come to the FCI (in BH molecule). More typical of the
applications of calculated NMR chemical shifts to analysis
of mixtures are calculations of 1*C chemical shifts. Table 3
demonstrates the importance of electron correlation to
13C chemical shifts in comparison with chemical shifts in
the gas phase at the low density limit. It can be seen that
the second-order electron correlation generally brings the
calculations close enough to experiment to be useful for
analysis.

3.2 Comparison of Carbon Chemical Shift Tensor
Components with Calculations

A more stringent test of the calculations has to do with
reproducing the elements of the shielding tensor, not
just the isotropic average that is obtained in solution or
the average in an MAS experiment in the solid state.
In a single-crystal study of a sugar, for example, there
are a large number of peaks that have to be assigned
in order to verify the structure. Complete assignment of
13C shielding tensors in the entire molecule from single-
crystal studies has been developed to the highest level
by Grant et al.©®” The multiple-axis sample reorientation
mechanism developed in this group permits the study of
crystals containing 50—100 magnetically different nuclei
per unit cell. In a polycrystalline solid with a very large
number of distinct 3C chemical sites, it is possible,
using multidimensional NMR techniques, to obtain the
individual shielding tensor elements for each isotropic
peak in the MAS NMR spectrum. To assign all these,
ab initio calculations of shielding tensor elements are
indispensable.

How well do calculations predict the tensor elements?
It is important to be able to do these calculations in a
relatively routine manner (one cannot use CCSD level of
calculations) so that fitting to the observed spectra can be
done expeditiously. Otherwise, theoretical calculations
would not be practically useful for analysis. The group
of D. M. Grant has carried out the largest number
of such analyses.® Single-crystal NMR experiments
produce a complete description of the shielding tensor
with six independent components specifying the tensor
in a fixed crystallographic coordinate system (the so-
called icosahedral tensor representation). Figure 1 shows
the degree of success of SCF-level calculations using a
modest-size basis set.”” The high level of agreement
between calculated and experimental tensors for 1>C is
such that only the structural parameters (bond distances
and angles) limit the level of agreement. This means that
ab initio calculations and measurements together can be
used to address certain fine details of solid-state structure,
surpassing the accuracy of X-ray data.”’) This is possible

Encyclopedia of Analytical Chemistry, Online © 2006—2013 John Wiley & Sons, Ltd.

This article is © 2013 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Analytical Chemistry in 2013 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470027318.a6109.pub2



20 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

220

200

180

160 -

140

120

Theoretical shielding (ppm)

100 ~

80

T T
140 120 100 80 60 40 20 0
Experimental shifts (ppm)

Figure 1 Comparison of computed full 3C shielding tensors
versus experimental values of icosahedral shift from TMS
obtained from single-crystal measurements. Both are expressed
in the icosahedral representation that includes the principal axis
system orientation. (Reproduced with permission from Ref. 70.
Copyright 1996, American Chemical Society.)

because the shielding tensor is exquisitely sensitive to
bond distances.

It is quite important to be able to predict theoretically
the individual tensor components of the building blocks
of proteins, in order to establish that it is possible to
use NMR chemical shifts in the determination of protein
structure. In Figure 2 is the demonstration of the degree
of success of SCF-level calculations using a modest basis
set for the tensor elements of 1*C in a single crystal of
threonine.’?

3.3 Other First-Row Nuclei

Shielding calculations for N, O, and F in most molecules
require a theoretical treatment including electron correla-
tion. Gauss et al. established the benchmarks of shielding
for these nuclei in sets of single molecules with large
atomic basis sets, using CCSD theory and CCSD(T)
theory, and these have been tested against absolute
shieldings for these nuclei by including vibrational and
temperature averaging corrections. Their benchmarks for
the shielding of N, 0,7 and F7 nuclei have been
used for testing the performance of less accurate but
more practical medium-size bases for MP2 or various
functionals for DFT calculations, prior to applications to
bigger molecules of interest. A comprehensive study of
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Figure 2 Comparison of computed full 3C shielding tensors
versus experimental values obtained from single-crystal
measurements for threonine. Both are expressed in the icosa-
hedral representation that includes the principal axis system
orientation. (Reproduced with permission from Ref. 72. Copy-
right 1994, American Chemical Society.)

28 small molecules and 72 nuclear sites (all but 6 being
first-row nuclei), using large basis sets and up to CCSD(T)
level of theory, tested against absolute shieldings for these
nuclei by including vibrational and temperature aver-
aging corrections, provides a means of comparing various
exchange correlation functionals in DFT calculations,®
as already mentioned in Section 2.5. Ab initio calcula-
tions for 17O are of sufficiently high quality to indicate
that the absolute shielding for 7O in CO (used to define
the experimental absolute shielding scale) is very likely
at the lower edge of the reported error bars. A systematic
study of B, N, O, and F shielding using the IGLO method
of distributed origins provided a measure of the initial
successes of theoretical calculations for these nuclei in
systems of known structure.”” ''B NMR chemical shift
calculations have been routinely used for the analyses
of new boron compounds, which are particularly useful
when more than one structure can fit the electron diffrac-
tion data. DFT and ab initio methods with relativistic
corrections have been used for 17O shielding calculations
in carbonyl complexes of transition metals (Ti, Zr, Hf, Fe,
Rh, Cr, Mo, and W) by Kaupp et al. and also by Ziegler
et al. In 17O experiments used to validate the calcula-
tions, the anisotropy of the tensor (o, — o, ) gives a good
measure of the predictive success of 7O calculations.7%?
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3.4 Second-Row Nuclei

Systematic studies of the shielding of nuclei 2°Si, 3'P, 338,
and ¥ Cl using IGLO distributed origins in a wide variety
of molecules have been compared against chemical
shifts, leading to reasonably good straight lines.”” GIAO
calculations including second-order MP2-level electron
correlation for 3!'P has been used to estimate the infinite-
order results, and these agree very well with the absolute
shieldings that are known for molecules ranging from PN
to P, a range of about 900 ppm.’® A similar systematic
study was carried out for 33S shielding in a wide variety
of sulfur compounds spanning a wide range of chemical
shifts, of 1000 ppm.”® DFT calculations of 33Cl shielding
in XCl,; (where X=C, Si, Ge, Sn, and Ti) gave good
agreement with experimental chemical shifts observed in
solution®”; however, the calculations were not validated
against any of the available absolute shieldings, such as in
CIF (6 =—516+23 ppm) or HCI (6 =946.3 + 0.9 ppm).
Since many Cl NMR spectra are obtained in the solid
state, subsequent calculations have been carried out using
GIPAW.®D

3.5 Heavy Nuclei

Heavy nuclei present some general problems for
calculations of NMR shielding. First, the larger number of
electrons requires larger numbers of basis functions and
including electron correlation becomes very expensive.
Second, relativistic effects could be very important as
these tend to increase by powers of the atomic number.
Third, in some cases there are few if any gas-phase
data that can be used to test the absolute shieldings
from the calculations; in many cases, only solution-
phase experimental data is available for comparison
with calculations (e.g. ®¥Ga, BIn, 7 As, 1Sb, 1¥Xe).
For the heavier nuclei, the nonrelativistic identity
that relates the spin—rotation tensor, measured in the
isolated molecule via microwave spectroscopy, to the
paramagnetic part of the nuclear shielding no longer
holds. The intuitive zero paramagnetic shielding along the
axis of a linear molecule that arises from nonrelativistic
theory no longer holds, which means that the parallel
component of the [6%¢(FXeF) — o*¢(atom)] chemical

shift tensor is not zero or nearly zero. The observation
by Wasylishen et al. of a nonzero parallel component
for Xe chemical shift in XeF, relative to the Xe
atom establishes experimentally that the relativistic
effects on Xe chemical shifts cannot be neglected. The
relativistic contributions to the Xe atom shielding are
easily understood to be large, but this experimental
finding means that the relativistic contributions do
not subtract out in taking chemical shifts because
they vary substantially from one molecular system to
the next.

77Se is an exception to the third difficulty; there are
gas-phase data for Se compounds and these can be used
to explore the range of problems associated with heavy
nuclei in general. Correlation effects must be included
for a quantitative description of 7’Se chemical shifts in
those same bonding situations where 7O shielding has
been found to require correction for correlation effects.
The additional complication of the large number of
electrons therefore makes the 7’Se calculations more
challenging. The results of ab initio calculations are
very good. At the SCF level, for example, various
calculations for the isotropic shielding of H,Se lead to
2167.6, 2170, and 2171 ppm, which are very close to each
other and reasonably close to the value calculated at
the CCSD level (2213 ppm) and the experimental value:
2101 + 64 ppm on the absolute shielding scale®? (without
the relativistic corrections for the diamagnetic shielding
of the free atom). The electron correlation effects are
only 2% of the total shielding in H,Se and O=C=Se;
they are 7% of the total shielding in Se=C=Se. This is
very encouraging. Table 4 shows only the highest level
ab initio calculations compared with DFT calculations
and experiment. Keeping in mind that the rovibrational
corrections are about —60 ppm (i.e. o, may be converted
into experimental ¢, by adding —60ppm), the CCSD
values are within 3-5% of the experimental values. On
the other hand, the DFT results are less shielded than the
CCSD values by 100—-200 ppm.

The situation for 'Te is comparable to that in
77Se. The 'Te nucleus in TeF, gas has an absolute
shielding of 2570+ 130 ppm in the zero-density limit,
if the nonrelativistic diamagnetic shielding of the free

Table 4 Calculated 7’Se shielding compared with experimental absolute shielding values in the gas phase (in ppm)

Molecule H,C=Se Me,Se H,Se O=C=Se Se=C=Se
CCSD o2 —741 1877.5 2213 2345 1596
DFTo,’ — 1668 2093 2270 1441
Expt. 0,° —900 £200 1756 + 64 2101 £ 64 2348 £60 1610480

aGauss et al.®?
®Ziegler et al.®¥
See Jameson® for the original sources of the experimental data.
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atom is used. The DFT nonrelativistic calculations give
2260 ppm,®® which is 200-300 ppm less shielded. This is
in the same direction as the difference between DFT and
CCSD in the 7’Se case. The ability of DFT calculations
to reproduce the full range of '>>Te chemical shifts in all
types of chemical bonding situations is encouraging.®®
Approximate relativistic calculations of '»Te chemical
shifts in the same set of molecules at the MP2 level
give a better correlation with experiments (in solution),
partly because spin orbit (SO) contributions are found to
be non-negligible.®” As an indication of how muddled
the situation is for heavy nuclei, various calculations
of the relativistic corrections for Te in TeH, lead to
values from 861 to 1450 ppm, depending on the type of
relativistic method used, electron correlation level, and
basis set size. This is a considerable spread (589 ppm)
in comparison to the spread in nonrelativistic values,
which is 346 ppm. Clearly, results from different groups
of calculations cannot be directly compared because
systematic improvement in basis set size and level of
electron correlation has not been carried out. Four-
component calculations do not necessarily lead to more
accurate results, because electron correlation level and
basis set saturation issues are not yet settled.

Benchmark data and case studies for relativistic
calculations for heavy nuclei are provided in the review
by Autschbach and Zheng.®? The spread in calculated
values for benchmark systems such as HX (X = Cl, Br,
I) is indicative. While nonrelativistic F shielding has a
spread of 15.5 ppm, all values are within one sigma of
the experimental absolute shielding value; on the other
hand, for Cl, Br, and I, where relativistic methods are
required, the spread is 95 ppm, 784 ppm, and 4571
ppm, respectively. The nonrelativistic values for Cl, Br,
and I have a spread of only 60, 135, and 386 ppm; so
although basis set quality may be inadequate and electron
correlation treatments are not optimal, it can be deduced
that relativistic corrections are by and large responsible
for the incoherent nature of the calculated results for
halogen nuclei.

For transition and post-transition metal nuclei, there
are the usual problems associated with heavy nuclei (both
scalar and SO relativistic contributions are expected
to be important), plus the lack of absolute shielding
information. In calculations for other transition and
post-transition metal nuclei, only shielding differences,
i.e. chemical shifts, have been used to compare with
experiment. With one exception, there are no gas-phase
data to compare with. There is the added complication
that many measurements for transition metal nuclei are
made in solutions of complex ions, where solvation
effects can be very important. Despite these problems,
some DFT calculations have been done for 1%Rh, %1 Zr,
SFe, and *Co. It is still an open question which type

(hybrid, GGA, other) of exchange correlation functional
would be best to use. The range of transition metal
shifts is usually very large and these shifts exhibit useful
diagnostic variations with ligand types, but the agreement
is not yet at the level that is achievable routinely with
13C shielding calculations. The theoretical calculations
have yet to catch up with experiment. Witness, for
example, the one case where gas-phase data are available:
CdMe, molecule. Beam measurements show neat CdMe,
liquid being deshielded by 1746 ppm from the free Cd
atom, which has an absolute shielding of 4813 ppm.
Thus, 0=3067ppm for neat CdMe, liquid at room
temperature. The gas is found to be 62.1 ppm unusually
less shielded than the neat liquid,®® so that o = 3005 ppm
for gaseous CdMe, at 97°C. This is to be compared
with 3504.5 ppm (too shielded by 500 ppm) from GIAO
Cd shielding calculations on an isolated molecule of
CdMe,, with a spread of 105 ppm depending on the basis
set used, neglecting relativistic corrections or electron
correlation.®” Other calculations give more shielded
values than this, as much as 900 ppm more shielded
than 3005 ppm. Since the chemical shift range of Cd
is about 900 ppm, the achieved level of accuracy needs
considerable improvement. A review of calculations for
heavy nuclei by Autschbach and Zheng®? provides
insight and illustrative examples, particularly for very
heavy nuclei such as Pb, Hg, and Au.

4 CALCULATIONS OF SPIN-SPIN
COUPLING CONSTANTS

The various mechanisms in the nonrelativistic limit, given
by Equations (10)—(14) are J(©OP)_ JOP) jFC) JBD) and
the cross-term JPFO) which has no isotropic part. The
OD term, J©OP)_is the only term that is not expressed
as an SOS in the Ramsey formulation, rather it is an
average value of an operator containing two nuclear
spins. J©OP) is not usually small and can be rather large
for 2J(HH). A systematic study of this term shows that it
is not very sensitive to basis set choice (double zeta with
polarization functions are sufficient) and to inclusion of
electronic correlation (SCF average values will do); this
term is particularly important for "J(HH), independent
of n. The sign of the contribution is negative for two-
bond HH coupling. From a systematic study of the OP
mechanism using DFT, J(OF) appears to be significant for
most couplings although not dominant, and is particularly
important for couplings involving a nucleus with lone
pairs. The sign of the contribution (reduced so as to not
include the nuclear gamma values) can be positive or
negative; J(OP) is negative and is the largest contribution
for CO and N, molecules, for example. The SD term
J©D) is the most time-consuming to calculate and so is
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sometimes neglected; it is not small when multiple bonds
are involved between the coupled nuclei. For example,
for N, molecule it is comparable to and partly cancels the
JFO) term.®® Electron correlation is very important for
multiple bonded systems and for nuclei with lone pairs and
must be accounted for, to obtain reliable results. Results
at the SCF level have the wrong sign and magnitudes for
coupling in both CO and N, molecules; the magnitudes
are completely off for couplings in H,C=CH,, whereas
correlated ab initio methods (CASSCF, SOPPA, CCSD)
give very good values and the correct signs compared to
experiment, with CCSD being the best. Gauss suggests
that only the unrelaxed CC3 approach appears to be a
suitable scheme for the general and reliable calculation
of J with an approximate inclusion of triple excitations, as
CCSD(T) suffers from problems due to triplet instabilities
or near instabilities and cannot be recommended for this
purpose.®V

DFT calculations have difficulty reproducing the results
for CO and N,, regardless of the functional used, and the
popular functionals do more or less about the same, in
signs and magnitudes for the one-bond J between first-row
nuclei and for all the couplings in H,C=CH,.

The sign and magnitude of the FC term, JFO, term
(reduced) varies across the periodic table. Where no
multiple bonds are involved, this mechanism usually
provides the largest contribution to one-bond coupling
constants. Electron correlation is very important for
this mechanism and unrealistic values may result from
calculations at the SCF level. The comprehensive
review by Helgaker et al.®? of theoretical methods

Table 5 One-bond spin—spin coupling constants (Hz)

for calculating spin—spin coupling J tensors includes
comparisons of results using different levels of theory,
different methods of including electron correlation and
relativistic effects, as well as applications in the solid state.

4.1 One-Bond Coupling Constants

Table 5 shows the various contributions to the one-bond
couplings in HF, HCI, CO, and N,. The uncorrelated
results (RPA) are shown to be inadequate. Among
the various methods of including electron correlation,
SOPPA, CCSD, MBPT, MCLR theory, and DFT, the
DFT calculations suffer from the inadequacy of the
functionals, which may be good enough to reproduce
binding energies, but offer less accurate descriptions of
the electron spin distributions where they are needed
in calculations of J, especially the FC mechanism. As
seen in Table 5, DFT gives the worst results among the
correlated calculations. MCLR theory uses an MCSCF
reference state and is capable of describing electronic
systems with large static correlation effects.

How well do calculations predict the simple one-bond
1J(CH)? Here the isotropic value is found to be entirely
dominated by the FC mechanism and is easily reproduced
by calculations that include correlation, including DFT.
Correlation effects can be substantial. For example, the
uncorrelated calculation of the FC term for 'J(CH) in
HCCH molecule leads to 449.3 Hz, whercas SOPPA,
which includes correlation up to second order gives
246.5 Hz, which agrees quite well with the experimental
value of 248.7Hz. On the other hand, calculations are

Molecule Method References J(FO) Jop) J(©D) JED) J J (Expt.)
HF RPA 93 4673 119.3 -0.1 —12.4 654.1 —
SOPPA 93 338.3 195.7 —0.1 -1.0 532.9 —
MBPT 94 390.71 195.14 1.69 —17.47 570.01 —
DFT 95 198.1 198.0 0.1 396.2 —
CCSD 21 338.2 176.2 0.0 -1.0 513.4 529423
H33Cl RPA 21 16.78 13.70 0.00 —0.45 30.03 —
MBPT 94 12.52 12.02 0.00 —0.08 24.45 —
CCSD 21 22.04 12.65 0.00 0.34 35.03 377
Bcl7o RPA 96 -8.1 12.2 0.1 -93 -5.1 —
SOPPA 96 7.3 14.8 0.0 —4.0 18.1 —
MCLR 90 6.69 13.66 0.09 —433 16.11 —
DFT 95 13.4 12.4 0.1 — 25.9 —
CCSD 21 7.0 13.0 0.1 —4.6 15.5 —
CC3 91 6.92 13.1 0.1 —4.82 15.30 16.4+0.1
NN RPA 96 —7.65 0.50 0.0 -8.13 —15.26 —
SOPPA 96 0.45 3.25 0.0 —1.55 2.18 —
MCLR 90 -0.23 2.83 0.02 -1.85 0.77 —
DFT 95 2.0 2.7 0.0 — 47 —
CCSD 21 0.3 2.8 0.02 -1.7 1.4 —
CC3 91 0.80 2.78 0.03 —1.84 1.77 1.8+0.6
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Table 6 Contributions to the calculated anisotropy of the one-bond coupling in HX molecules, AJ=(J, - J ;) (Hz)*

J(FC) J(OD) J(OP) J(SD) J(SDFC) Total
HF, SCF J, 453.44 143.50 —11.34 —71.96 —392.22 121.41
J, 453.44 —69.43 297.82 0.44 196.11 878.38
AJ 0 212.93 —309.16 —72.4 —588.33 —756.97
HF, MBPT(2) J, 390.71 143.12 —-8.92 —58.78 —373.40 92.73
J, 390.71 —69.03 29717 3.18 186.63 808.65
AJ 0 212.15 —306.09 —61.96 —560.03 —715.92
HCI, SCF J, 2517 13.19 —-2.90 —2.33 —42.26 —-9.14
J, 25.17 —6.60 18.95 0.71 21.13 59.36
AJ 0 19.79 —21.85 —-3.04 —63.39 —68.50
HCI, MBPT(2) J, 12.52 13.19 —-2.52 —1.84 —41.38 -20.03
J, 12.52 —6.59 19.29 0.80 20.68 46.70
AJ 0 19.78 —21.81 —2.64 —62.06 —66.73
4Fukui et al.94

less successful with the one-bond 'J(CF). DFT is found
to underestimate the FC contribution to the one-bond
coupling because of the inability of existing exchange
correlation functionals to produce the accurate spin
densities required for this calculation. In the presence
of polarizable lone pairs, the correlation problem is more
severe, and the available functionals do not describe the
spin densities well enough in the case of 'J(CF), which
are predicted by DFT to be about 100 Hz away from
experimental values in every case.

There are many interesting trends observed in
coupling constants, in signs, magnitudes, dependence on
substituents, stereochemistry, position of coupled nuclei
in the periodic table, and so on.®” Many of these trends
have been very useful in analysis of spectra, and yet a
sound theoretical basis for few of such trends has been
established.

The anisotropy of the tensors calculated with and
without electron correlation are shown in Table 6 for
HF and HCL®¥ First of all, note that the FC mechanism
is purely isotropic and the cross-term J©SPFO) which
has no isotropic part, is responsible for a large part of
the total anisotropy of the tensor. The anisotropy of
the orbital mechanisms are opposite in sign and partly
canceling. The contribution to the anisotropy from the
SD mechanism is itself small. Any anisotropy observed in
the J tensor in oriented molecules has to come from the
mechanisms other than the FC term. However, because
of the very large contribution from the cross-term J(SPFC)
to the anisotropy (78% in HF and 93% in HCI), the
magnitude of the measured anisotropy unfortunately
conveys very little information about the magnitude of
the contributions of mechanisms other than the FC term
to the isotropic average observed in solution. The effect
of electron correlation on the individual components
of JOP) is small. (It is well known that the effect of
correlation on the isotropic average of J(OP) is small

and that it is not very sensitive to basis set choice.) The
orbital mechanisms have opposite contributions to the
anisotropy, J |(|O D) and J(LOP) are similar in sign (positive)
and magnitude (large), and so are Jl(‘OP) and J(lOD)
(negative and smaller). The effect of electron correlation
on the cross-term JSPFO) is about 5%. If this is typical,
uncorrelated calculations should permit estimation of the
J anisotropy that may be expected in oriented systems.
There are only a few measurements of the anisotropy of
the J tensor because the observable quantity in solids is
the (D + J) tensor, and the direct dipolar coupling tensor
D overwhelms the sum. The anisotropy of the J tensor
has been determined in a few favorable cases, such as
1J(G'PX), where X =1 Hg, ®Pt, In, in Wasylishen’s
laboratory.®® A typical measurement of this type in a
single crystal of a mercury phosphine complex shows the
experimental technique for arriving at J;, =11 800 Hz,
J, =6400Hz, and the isotropic value is 8200 Hz. While
the isotropic value is very likely to be dominated by
the FC mechanism, the anisotropy AJ=5400 Hz comes
entirely from the non-FC mechanisms.®®

MCSCF calculations of a wider set of diatomic
molecules in addition to HF and HCI, (LiH, LiF, NaF, KF,
Na2, NaK, BF, AIF, CIF) by Bryce and Wasylishen®”
reveal trends in anisotropy arising from the various
mechanisms with position of coupled nuclei in the periodic
table. It is interesting to find that the anisotropy in J-
coupling can be large compared to the direct dipolar
coupling, and that the anisotropy can be as large as 2.5
times the isotropic J that is observed in solution.

4.2 The Two-Bond Coupling Constant

The geminal coupling constant 2/(HH) turns out to be
very difficult to predict. As is the case for all "J(HH), the
JOD) term is important. So also is the J(OP) term, but it has
the opposite sign to the J(©P) term. For the series CH,,
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SiH,, GeH,, SnH,, the orbital mechanism J(©P) and J©P)
terms have opposite signs and they very nearly cancel
in CH,. The magnitude of the JFO term varies from
large negative to large positive. There is poor agreement
of the total calculated value with experiment.*? The
experimental variation of 2/(HH) with the nature of the
intervening atom is not predicted quantitatively, although
the trend of algebraically increasing from C to Sn is
reproduced at every level of correlation treatment.>29%)
In the series CH,, NH;, OH,, 2J(HH) has the sign of
the JFO term, but is by no means dominated by it.
Here too, the experimental variation of 2J(HH) with the
position of the intervening atom in the periodic table
is not predicted quantitatively, although the trend of
algebraically increasing from C to N to O is reproduced
at every level of correlation treatment.?!

4.3 Coupling Over Three Bonds

From a practical viewpoint, one of the very early
major successes of theoretical calculations of spin—spin
couplings is the prediction of the torsion angle depen-
dence of *J(HCCH), known as the Karplus equation.
The very simple valence bond calculation!” using a
small four-atom fragment (HCCH) led to an unequivocal
prediction which permitted a practical determination of
structure strictly from the observed isotropic value of
the coupling constant. It was found later that the dihe-
dral angle dependence of the three-bond coupling is very
general and Karplus-type equations have been used to
describe many types of three-bond coupling pathways,
for example 3J(X-Y-C-H), where X represents other
nuclei such as 3'P, B3C, or °N, and three-bond coupling
paths such as PtCCC, PWNN, PCPSe, etc. Used with
caution, experimental 3/ values and a Karplus equation
make a reasonable conformational probe. The original
Karplus equation is written in the form of Equation (19)

3J(HCCH) = Cy + Cjcosd + C,cos(29)  (19)

with Cy=8.02, C; = -1.2,and C, = 7.0 Hz as the empirical
parameters, although other forms have also been used.
The coefficients in the above equation have been
calculated by various methods using ethane as the model.
The JFO contribution is the largest and JP) the smallest.
One such calculation, with second-order correlation for
all contributions except the FC contribution (which was
done with third-order correlation), leads to C,=4.66,
C,=0.39, and C, =5.78 Hz.1%V In the general case, the
3] value also depends on the bond angles between any two
adjacent bonds out of the three, and there are substituent
effects. It is recommended that Bayesian analysis be
used to find the appropriate parameters for a particular
structure type: proteins, sugars, etc. Bayesian analysis of

the coupling data in ubiquitin provides the parameters
for Karplus type equations for 3J(C'-C), 3J(C'-H),
3pC-c?y, 3JHN-C), JMHN-H*) and 3J(HN-CP)
without any bias.!%) The analysis is based on the notion
that the observation of a scalar coupling constant of
strength 3J is described through a probability expressing
the fact that, owing to experimental and processing
errors as well as theoretical shortcomings measured and
theoretically predicted, scalar couplings will never match
exactly. Assuming no systematic deviation, a Gaussian
error model is used.

4.4 Relativistic Effects

Why are relativistic effects important for spin—spin
couplings of heavy nuclei? Relativistic effects are
particularly important for electronic properties that
depend on the electronic wavefunctions very close to
nuclei where electrons move fast. Relativistic effects on
the electronic structure of atoms and molecules consist
of a contraction of s and p shells, the spin—orbit splitting
of the non-s shells, and the relativistic SCF expansion
of d and f shells. The contraction of the s and p shells
leads to larger spin densities at the nuclei (FC term)
and also larger values of (r,y~>) (other mechanisms).
An a posteriori correction of the nonrelativistic values of
these by a multiplicative factor B(n, Z), depending on the
principal quantum number # and the nuclear charge Z,
was suggested by Breit in 1930,1%% and this multiplicative
factor has been used by Pyykko et al.!®™ to impose a
simple relativistic correction on the values of J calculated
using the nonrelativistic formulas. This factor, B(n, Z), is
1.348 for the n =35 shell of Sn and is 2.592 for the n=06
shell of Pb. This means the nonrelativistic calculations
underestimate the value of J(SnH) by a factor of 1.348.
When both nuclei involved in the coupling are heavy, the
product of two such factors is substantial.

Experimental measurements on diatomic molecules in
the gas phase provide excellent tests for computational
methods, especially when the data provides the anisotropy
of the J tensor. Relativistic hybrid DFT calculation
of indirect nuclear spin-spin coupling tensors were
compared with experiment for diatomic halides MX,
M = (Li, Na, K, Rb, Cs), X = (F, Cl, Br, I)
and for polyatomic xenon fluorides and group-17
fluorides.!9) The relativistic (two-component ZORA
formalism including scalar and spin—orbit corrections)
DFT (hybrid functional PBEO, which includes 25% exact
exchange) calculations reproduce the anisotropy of the
coupling constant very well. For some of the heaviest
molecules in the set, the relativistic effects coming from
spin—orbit coupling can be quite large compared to the
scalar part. Figure 3 shows the quality of the results
from the relativistic DFT calculations of the isotropic

Encyclopedia of Analytical Chemistry, Online © 2006—2013 John Wiley & Sons, Ltd.

This article is © 2013 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Analytical Chemistry in 2013 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470027318.a6109.pub2



26 NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

3200
+*
1600 1
—_ 0 1
N
z
€ -1600 A
S
3
£
—3200 1 A
—4800 A
L)
—640

0 r : T - -
—6400 -4800 -3200 -1600 0 1600

Jiso (expt) (H2)

3200

Figure 3 Plot of calculated isotropic coupling constants versus
experimental values for the group-17 fluorides and xenon
fluorides. The calculated values are ZORA at spin—orbit
level using the PBEO functional that includes 25% exact
exchange. (Reproduced from Ref. 105. © 2009 Canadian Science
Publishing or its licensors. Reproduced with permission)

part of J for polyatomic xenon fluorides and group-17
fluorides. Earlier studies of J in interhalogen diatomic
molecules using the same relativistic formalism but with
the GGA functional also showed excellent agreement
with experiment for both the anisotropy and the isotropic
value. In addition a good linear correlation was found
for the anisotropy and the isotropic value of the coupling
constant (with the y of the nuclei divided out) against the
product of the atomic numbers of the coupled nuclei.

S CALCULATIONS OF ELECTRIC FIELD
GRADIENTS

5.1 Calculations of Electric Field Gradients at Nuclei
in Isolated Small Molecules

Since it is the coupling of the nuclear electric quadrupole
moment with the EFG that is observed in experiments,
it is necessary and sufficient to know either one of
them to determine the other from spectroscopic data.
The most reliable method of obtaining the intrinsic
electric quadrupole moment of a nucleus is by very
high-quality ab initio calculations of the EFG tensor in
selected small molecules in which the nuclear quadrupole
couplings of the nucleus have been measured accurately
via microwave spectroscopy. The value of eQ, a property
of the bare nucleus, is obtained as a fit parameter.
Once calibrated, this eQ value is used to deduce from

experiment the EFG tensor for any other nuclear site
of the nucleus. Tables of eQ values continue to be
refined with emergence of quantum mechanical EFG
calculations of increasing accuracy, including vibrational
corrections.

Accurate theoretical calculations of EFGs for small
molecules pose no special problems; requirements of basis
set quality and appropriate level of electron correlation
depend on the molecule, just as for calculations
of shielding, but less demanding in that only the
ground electronic wavefunction is required. Just as for
shielding calculations, the =3 factor in the EFG requires
wavefunctions that are accurate in the immediate vicinity
of the nucleus.

5.2 Simulations of Nuclear Quadrupole Coupling in
Associated Liquids

The presence of neighboring molecules influences the
EFG at a nuclear site, by directly providing additional
charge distributions outside of the molecule and also by
distorting the electronic distribution of the molecule of
interest. An extreme case is a liquid in which hydrogen
bonding or complex formation is present. One approach
to the calculation is to consider the liquid as having a
distribution of clusters of all sizes, monomers, dimers,
n-mers where n is truncated at some value when the
contribution to the average value is sufficiently small.
Molecular geometries of each n-mer are optimized and
the EFGs are calculated at each nuclear site in the n-
mer. Molecular partition functions are calculated for
each n-mer, and from thermodynamic calculations, the
distributions of the n-mers are obtained. The average
EFG for each cluster is weighted with the cluster
distribution to obtain the EFG values in the liquid
phase. The N, 7O, and *H of the carbonyl and
cis and frans amides have been calculated in liquid
formamide by this method, for comparison with the
experimental values of NMR quadrupolar relaxation time
as a function of temperature.'%9 Cyclic hexamers are
found to be the dominant species at room temperature,
consistent with structural data from neutron diffraction,
low-frequency Raman, and far-infrared spectra. This
method of calculation has been applied to liquid HCN,
in which the calculated values for the isolated monomer,
dimer, and trimer successfully predict the values known
independently from pulsed Fourier transform microwave
experiments on the van der Waals complexes.!?
Theoretical calculations such as these, combined with
measurements of the nuclear quadrupole coupling
constants as a function of temperature, can provide a
useful general probe of electronic changes accompanying
hydrogen bonding, cluster formation, solvation, phase
condensation, and other phenomena in condensed media.
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5.3 Electric Field Gradient Tensor and Electronic
Structure in the Solid State

Calculations offer a systematic way to investigate the
dependence of NMR parameters, particularly the EFG,
on structure in the solid state. Bond distances, bond angles
or neighbor atoms can be varied much more easily than
in an experiment. The EFG tensor is intimately related to
the local molecular structure. In crystalline silicates, for
example, the measured 7O nuclear quadrupole coupling
constant serves as a probe of oxygen coordination number
and geometry. Using experimental correlations between
structure (e.g. Si—-O-Si bond angles) in crystalline
silicates and the measured 7O quadrupolar coupling
constants, the Si—O-Si bond angle distribution in silicate
glasses can be deduced, bridging and nonbridging oxygens
can be distinguished.1%19) Although particularly useful
in inorganic chemistry,!'”) structure determination of
biomaterials can also be elucidated by EFG tensors of
14N, 170, 2H, as well as metal ions such as Ca?*, which
are naturally occurring in such systems. EFG tensors
of deuterium nuclei in hydrogen-bonded positions, such
as the amide or carboxy hydrogen in peptides, give
deuteron/proton bond directions with an accuracy rivaled
only by neutron diffraction, as it has been established
that the unique eigenvector of a deuteron quadrupole
coupling tensor is approximately parallel to the bond
direction of the deuteron. "N EFG tensor is shown
to be highly sensitive to the surrounding environment,
particularly to nearby hydrogen bonding in a study of N
EFG tensors in crystalline amino acids.!'" An analysis
of the EFG for a variety of typical structural motifs can
provide an intuitive way of understanding the chemical
origin of the magnitude and the sign of EFG tensors
at nuclei, as well as of their orientation with respect to
the molecular coordinate frame. This is provided in a
lucid treatise in chemical structural terms by Autschbach
et al.01?

For practical solid-state calculations using GIPAW, for
example, a prerequisite is an initial structure, typically
obtained from diffraction experiments. When the quality
of such data is insufficient (locations of light atoms
such as H are not specified, or only a low-resolution
structure is available), geometry optimization is required
prior to making calculations of NMR parameters. On
the other hand, when single-crystal data are available
from synchrotron measurements or neutron diffraction,
very little change of the NMR parameters occurs upon
geometry optimization.

5.4 Relation Between Chemical Shift and Electric
Field Gradient Tensors in the Solid State

NMR measurements in single crystals permit the
independent determination of the principal axis systems

of the EFG tensor and the shielding tensor. Even in
the powder it may be possible to find the relative
orientation of these two axis systems by referring
to the known axis system for the dipolar coupling.
The two axis systems are not necessarily coincident.
Theoretical calculations of both the EFG and the
shielding tensors at the same nuclear site provide
descriptions of the electronic distribution and chemical
bonding that can be checked directly against experiment.
They provide respectively, a measure of the bond
direction and the strength of the hydrogen bond for
the deuterium nucleus, for example. In materials that
exhibit a distribution of nuclear sites, such as glasses or
polymers, multidimensional solid-state NMR techniques
permit the determination of the anisotropic chemical
shift as a function of the isotropic chemical shift or of
the EFG as a function of the isotropic chemical shift.
From such measurements, the anisotropic chemical shift
of 2°Si and the EFG of 17O nuclei, for example, can both
be used to characterize a silicate glass or other complex
materials, providing complementary information. Thus,
these two tensors provide local electronic information
even in complex materials. With the assistance of
theoretical calculations, such multidimensional solid-state
NMR experiments can provide answers to questions
about the microscopic structure of solids, on the
extent of order/disorder in cation environments, random
distributions or amorphous/crystalline domains, short-
range and long-range order, and so on.

5.5 Relativistic Effects on Electric Field Gradients

In four-component variational relativistic quantum chem-
ical methods, the electronic contribution to the EFG is
calculated as an integral over the electron charge density
distribution multiplied with the field-gradient operator.
With the four-component method, both the scalar and
spin—orbit effects are included, and accurate calculations
are carried out with large basis sets and a high level of
electron correlation, for example CCSD(T). MP2 may
not be sufficient. The benchmark set of molecules is once
again HX, (X = F, Cl, Br, 1),'® and also Hg in its
compounds.®” Two-component calculations have also
been carried out on the same HX set, and further appli-
cation to group-13 iodides and uranyl ions,** or Hg in its
compounds,!'® with high accuracy.

In the solid state, for the calculation of properties with
a large contribution in the region close to the nucleus, it
is necessary to use projected augmented wave (PAW)
operators modified to account for relativistic effects.
Yates et al.*” have used GIPAW operators modified
using the ZORA to compute "’Se and '>Te shieldings.
It remains to be seen how much the calculation of
solid-state NMR spectra of heavy quadrupolar nuclei
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will be dependent on relativistic effects. An unusual
finding for the >’I EFG tensors in Mgl,, Cal,, Srl,,
and Bal, solids: from the very good agreement between
the experimental and the computed values it has been
suggested that relativistic contributions appear to be
minimal for EFG at the I nucleus in these particular
systems.115)

6 INFLUENCE OF INTRAMOLECULAR
GEOMETRY AND ENVIRONMENT ON
NUCLEAR MAGNETIC RESONANCE
PARAMETERS

The temperature dependence, mass dependence (isotope
effects), and site sensitivity (e.g. dependence on
secondary/tertiary structure of proteins) of chemical
shifts, spin—spin couplings, and EFGs provide very useful
additional information about structure, dynamics, and
environment of a molecule or a particular part of a
molecule, that is not available from other experiments.

6.1 Nuclear Magnetic Resonance Parameter
Dependence on Local Geometry: Bond Lengths,
Bond Angles, Torsion Angles

The insight into structure and environment provided by
the NMR chemical shift is obtained by a combination
of theoretical calculations and experiments.1!® The
NMR chemical shift discriminates between the various
alanine residues in the same protein molecule, between
two nuclear sites identical in every way except that
one has '®0 in a neighboring bond rather than 'O
(isotope shift studies), between a "N (and '3C) in
a dynamically averaged rather than rigid headgroup
at an oriented membrane interface, for example. In
most cases, theoretical calculations using innovative
model fragment systems are required to interpret the
relation between the structure and the chemical shift.
The discrimination is afforded by the extreme sensitivity
of the shielding tensor to the local geometry: the
bond lengths, bond angles, and torsion angles. The
mathematical surface describing the shielding tensor as
a function of these geometrical parameters is called
a shielding surface. Vibrational averaging over the
shielding surface, weighted by the probabilities of
finding the molecule at the geometries described by
these parameters (the vibrational wavefunction provides
these probabilities) gives average shielding values that
are different for different isotopomers, and average
shielding values that are different for particular (¢,
) torsion angles that characterize particular alanine
residues in a protein. Thus, isotope effects on chemical
shifts can be predicted; the distinguishing chemical

shifts of different alanine residues in a protein can be
associated with specific local conformations, leading to
structure determination. The application of quantum
mechanical calculations of shielding surfaces to the
structural characterization of proteins was introduced
by de Dios et al.!'” This approach has led to the
possibility of secondary and tertiary protein structure
determination from NMR chemical shifts in solution using
13C alone.® The method is extremely powerful when
combined with complementary information obtained
from geometry sensitivity of other NMR parameters such
as spin—spin coupling and 'H chemical shifts.!” The
use of theoretical calculations of NMR shielding surfaces
to elucidate structure and dynamics finds application in
the gas phase, in catalysis, as well as in biomolecular
systems. (116:120.121)

This sensitivity of NMR chemical shifts to bond angles,
torsion angles, and nearest neighbors established by
theoretical calculations by de Dios et al. has been
exploited in an empirical way by several groups. Bax
et al.01?? developed a robust protocol for de novo
protein structure generation, called CS-ROSETTA, using
as input experimental parameters the 13C?, BCP, B/
I5N, 'H®, and '"HNY NMR chemical shifts alone. The
protocol uses an empirically optimized procedure to
select protein fragments from the Protein Data Bank, in
conjunction with the standard ROSETTA Monte Carlo
assembly and relaxation methods. CS-ROSETTA has
been successfully applied in a blind manner to several
protein targets with molecular masses up to 15.4 kDa,
whose conventional NMR structure determination was
done in parallel. CS23D2.0 is a web server set up
by Wishart et al.1?) for rapidly generating accurate
three-dimensional protein structures using only assigned
NMR chemical shifts as input. It uses a combination of
maximal subfragment assembly, chemical shift threading,
shift-based torsion angle prediction, and chemical shift
refinement to generate and refine the protein coordinates.
It has been found to successfully arrive at a protein
structure 90% of the time, at 1073-10~* times the time
that CS-ROSETTA does. The newer version by Wishart’s
group, GeNMR, can predict even totally novel folds
and handles protein complexes as well.!*» There are
also commonly used methods for torsion-angles-from-
chemical shifts only, such as TALOS+, DANGLE, and
PREDITOR. All use empirical information from the data
base of protein structures.

The dependence of the spin—spin coupling, the EFG,
and other molecular electronic properties on bond lengths
and bond angles, and the observations that are the
experimental manifestation of this, are similar to that
discussed above for shielding. The general theoretical
basis for isotope effects and temperature dependence of
these properties is the same. With the assumption of the
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Born—-Oppenheimer separation of nuclear motion from
electronic motion, the mathematical surface describing
the dependence of J (or other) on the geometrical
parameters (such as bond lengths) exists, just as does
the potential energy surface of the molecule. Averaging
on the property surface is carried out according to the
probability of finding the molecule at various geometries,
which in turn is determined by the vibrational wavefunc-
tions corresponding to the potential energy surface.!?>
Raynes et al.'?® have provided very good case studies
of these effects on coupling constants in polyatomic
molecules, including details of the theoretical surfaces,
vibrational averaging, and experimental measurements of
the temperature dependence of spin—spin coupling in the
various isotopomers. More recently, a set of calculations
of the effects of vibrational averaging on CC calculations
of J for hydrocarbons such as acetylene, ethylene, and
cyclopropane by Sneskov and Stanton'?”) provides one
of the first systematic benchmarks of zero-point vibra-
tional contributions to spin—spin coupling constants in
polyatomic molecules using the reliable CC theory. Two-
bond CCH couplings are the most affected by vibrational
averaging, the vibrational contribution varying from 8%
(acetylene) to 32% (ethylene). By incorporating the
vibrational averaging effects, the accuracy of the J(C-C)
as compared to experiment is indeed remarkable. Vibra-
tional corrections to J, calculated by DFT and other
methods, have also been studied. Upon including vibra-
tional corrections, the mean absolute errors and standard
deviations in comparison to experimental values decrease
for all methods except DFT/B3LYP. It is found that DFT
fails badly for molecules containing fluorine, as already
mentioned in Section 4.1.

Sometimes the vibrational averaging can involve large
amplitudes, for example, the inversion mode in NH;.(!2®
In this case, an accurate potential surface needs to be
generated (in this case, at the CCSD(T) level). Pointwise
J surfaces also have to be generated and fitted to a
fourth-order power series in the internal coordinates;
then a full variational treatment of the nuclear motion
is used to carry out the averaging using the variational
wavefunctions obtained from the potential surface. For
1J(NH), the bending motion increases the absolute value,
whereas the stretching motion decreases it, leading to
substantial cancellation and an overall slight decrease.
Without the proper treatment of the large amplitude
inversion mode, the vibrational correction to the isotropic
J is underestimated by 57%.

6.2 Intermolecular Effects and Averaging

NMR shielding is extremely sensitive to intermolecular
effects. This sensitivity is manifested by the very large gas-
to-liquid shifts (4.4 ppm for 'H in H,0O, 19.5 ppm for "N

in NH;, 77 ppm for 3!P in P,, 120 ppm for 7’Se in H,Se,
around 200 ppm for *Xe in xenon), by the aromatic
solvent-induced proton chemical shifts, and by the very
large average chemical shifts observed for Xe in various
media such as zeolites and polymers.11%12D While the
short-range effects (i.e. the geometry dependence and
hydrogen bonding) on shielding of 1*C, N, 70, and
'H nuclei in each amino acid residue of a protein can
be calculated using a model fragment including only
the most immediate atoms to the nucleus of interest,
the long-range effects of neighboring residues may be
considered in the same way as intermolecular effects
from solvent molecules. It has been found that such
long-range electrostatic effects have an important role
to play in interpreting 'H, N, and 7O chemical shift
inequivalencies in proteins, and neighbor anisotropy has
an important role in the case of 'H. The effects of
hydrogen bonding on the 'H shielding tensor in ice
have been reproduced by calculations using 17 H,O
molecules arranged in the experimental ice configuration,
for example, emphasizing the importance of long-range
effects.12?

Theoretical calculations of intermolecular effects are
sometimes carried out by approximating the medium
as a continuum and considering the molecule in a
cavity within this medium of fixed dielectric constant.
Such an option is routine in many quantum mechanical
software packages. Another approach is to consider the
intermolecular effects in terms of electrical polarization
effects of fixed partial electrical charges centered on
surrounding atoms in a crystalline system; the charge
perturbation model was used to include the nonbonded
contributions to shielding from remote atoms in the same
protein molecule. Doing the quantum calculations in the
presence of point charges adds trivially to the processing
time without them. Of course, the preferred approach of
including intermolecular effects in a crystal is by using a
periodic boundary approach such as already described in
Section 2.7.

When not in the solid state where dynamics is mostly
vibrational, a nuclear site often suffers a dynamically
changing contribution of intermolecular effects as the
configurations of neighboring solvent or other neighbor
atoms change within the time of observation associated
with the NMR time scale. In such instances, in solution, in
the neat liquid, or for nuclear sites experiencing exchange,
intermolecular effects can only be taken into account
properly by carrying out averaging over configurations
or over time. The dynamic averaging may be carried
out in various ways, but in general one needs (i)
a means of generating configurations over which the
averages are taken and (ii) a means of generating
the shielding, J, or EFG for a given configuration,
that is, one needs to quantum mechanically calculate
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the nuclear shielding or J or EFG in the molecule
together with the solvent molecules at a very large
number of internuclear separations and orientations,
then one needs to average such shieldings (or J or
EFG) over the appropriately weighted configurations at
each temperature, by integrating the classical equations
of motion [by a molecular dynamics (MD) trajectory],
analytically integrating over configurations (this is only
possible in simple cases, as in a dilute gas of simple
molecules), or statistically sampling configurations in a
smart way (as in Metropolis Monte Carlo) for canonical
or grand canonical systems, whichever is appropriate.
Depending on how strong the intermolecular interactions
are, it may be necessary to do a fully quantum calculation,
thatis, include all the electrons and nuclei of the neighbors
in each step of the motion by a quantum mechanical
calculation (quantum MD). DFT is used in the latter
approach as it is efficient for large numbers of electrons
and nuclei, in a method developed by Car and Parinello,
CPMD (molecular dynamics).

In order to save computational time, the shielding, J,
or EFG at the nuclear site may have to be calculated
with nonuniform accuracy among all atoms of the
system. For example, the atoms closest to the nucleus
of interest may be treated at a higher level of theory
than the atoms farther out. A shell or onion type
of structure to the space around the NMR nucleus
arises where the innermost shell may be done quantum
mechanically with correlated wavefunctions, while the
outer shell may be done quantum mechanically at an
SCF level or even at a molecular mechanics level. Many
approaches to calculations in this type of shell structure
can be used by Morokuma’s ONIOM (our own n-layered
integrated molecular orbital and molecular mechanics)
method, 3 Karpluss QM/MM (quantum mechanics
molecular mechanics) method,*" or else by embedding
the high-level quantum system in the remainder of the
system, the latter treated as a collection of point charges
self-consistently adjusted to provide the correct Madelung
potential at the position of the nuclear site, an embedded
ion model.(13?

One way to do the averaging is by MD, that is, to
calculate the shielding (by any of the above-mentioned
methods) for each of a set of configurations from
an MD trajectory and do a simple average, each
configuration weighted equally. MD has been used to
produce a large number of instantaneous configurations
for which the component magnitudes and directions of
the >N shielding tensor can be calculated in a simple
model system (three N-methylacetamide complexes)
constructed from a gramicidin channel in a fully hydrated
phospholipid bilayer.!*® The MD method of sampling
reveals fluctuations in the tensor properties that may be
used to investigate the types of NMR spectra produced

during such motional averaging for a protein observed in
a fluid bilayer environment.

Another means of generating configurations is by an
importance sampling Monte Carlo method, in which the
ensemble average of the quantity, for example, shielding,
can be obtained with configurations generated according
to their probability in a chosen distribution based on
either energy (canonical ensemble) or chemical potential
(grand canonical ensemble).!*¥ For the interpretation of
distributions and chemical shifts of Xe atoms, periodic
boundary condition grand canonical Monte Carlo simu-
lations were carried out in various crystalline zeolites,
aluminum phosphate, dipeptides, clathrate hydrates, and
in constructed idealized crystalline materials containing
paramagnetic centers. Here, precalculated Xe shielding
surfaces were constructed from ab initio calculations using
a large number of positions for the Xe atom within
the cage, distributed according to the sharp dependence
of the Xe shielding with distance from its neighbors.
Neighbor atoms are included in the quantum calcula-
tion depending on the system. For clathrate hydrates,
40-48 water molecules surrounded the Xe atom and the
remaining waters were represented by the embedded
ion model. The shielding surfaces are found by math-
ematically fitting the ab initio results to appropriate
functions so as to reproduce the ab initio shielding
tensors from the fitted functions at arbitrary configu-
rations. By using a pairwise additive approach for the
shielding as well as for the interaction energy, the aver-
aging can be carried out via importance sampling in a
grand canonical Monte Carlo method.®® The use of
129Xe chemical shifts in studies of various electronic
environments (zeolites, polymers, clays, coals, biolog-
ical systems) depends on theoretical calculations of the
intermolecular effects on >’Xe shielding in the xenon
atom. The dispersion of the Xe signal in these various
media is very useful as a diagnostic tool in the anal-
ysis of structure of the medium, the distribution of Xe
atoms within, and the rate of exchange (diffusion) of
Xe from one cage (or channel or domain) to another,
as well as from within the medium to the bulk phase.
The ability to reproduce the temperature dependence
of the intensities and the individual chemical shifts in
the 12Xe NMR spectrum of the various Xe,, Xe,, Xes,
Xeg signals observed for xenon trapped in a variety of A
zeolites, (NaA, Ca,Naj, , A, KA, AgA) using a combi-
nation of quantum mechanical calculations and statistical
mechanical averaging, permits the interpretation of the
NMR observations in various other zeolites wherein fast
xenon exchange leads to one signal that contains the
average over all distributions.!> Xe chemical shifts
are very large (several hundred ppm) and discriminate
between amorphous and crystalline regions in polymers
and coals; however, the theoretical prediction of the Xe
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NMR spectrum in these more complex materials lags
behind the experiments. The same approach as used
in the crystalline zeolites should work in these more
complex systems, provided that an appropriate model
system can be introduced and tested in each case. A
review of the various theoretical approaches to dynamic
averaging of chemical shifts in condensed phases provides
a systematic classification and many examples from the
literature.®

Theoretical approaches for intermolecular effects on
J would be the same as for chemical shifts, although
the observed effects are generally smaller. A counter
example is provided by 'J(N-H) and 2/(H-H) in
liquid ammonia.3® Here the electric polarization
effects of the rest of the molecules affect the J-
coupling, as does the change in geometry while hydrogen
bonding partners change orientation and distance. Thus,
explicitly including hydrogen-bonded NH; molecules in
the quantum calculations is essential, just as in the case
of H,O in liquid water. Here, QM/MM calculations of J
(and shielding) were used with Monte Carlo averaging.
Gas-to-liquid chemical shifts for N and 'H were also
calculated, providing additional tests for the quality of
the description of the system.

Intermolecular effects on EFGs at a nucleus can be
substantial. In van der Waals dimers and higher n-
mers, the nuclear quadrupole coupling tensor can be
sufficiently different from that found in the monomer
and can be used to deduce the structure of the clusters
formed. Calculations of the EFG at a nucleus in a
cluster treated as a supermolecule generally have to
be carried out as a function of geometry, and it is
usually necessary for internal coordinates to be permitted
to vary with intermolecular separation. Furthermore,
consistent with the strength of intermolecular forces,
cluster vibrations can be very anharmonic, so averaging
will have to be done accordingly. Farrar and Weinhold
have carried out averaging of the EFG at the '“N and ’H
nuclei of HCN in (HCN),, (HCN);, and (HCN),, up to
n=6.19" The interpretation of the nuclear quadrupole
couplings in liquid HCN as a function of temperature also
requires that the distribution of the dominant clusters
be calculated by statistical mechanics. The non-pairwise-
additive cooperativity effects in hydrogen bonding that
are comparable in magnitude to that of dimer formation
in this system cannot be neglected in the calculation
of the NMR parameters. For the same reason, the
NMR parameters of liquid water or ice cannot possibly
be deduced from calculations on the dimer (H,O),
alone.

Including motional effects in the solid state is possible
in analogous ways, by using Monte Carlo or MD and
averaging the NMR parameters over the snapshots or by
considering the vibrations of the atoms in the solid, even

including temperature dependence of the dimensions of
the unit cell itself.137

6.3 Calculations of NMR Parameters in Amorphous
Solids

From the outset, Mauri’s method was designed to
be used not only for perfect crystalline solids but
also for amorphous materials by using a ‘supercell’.
Structures that are inherently nonperiodic, e.g., surfaces,
amorphous and disordered materials, may be studied
theoretically with a large enough unit cell. With increasing
computational resources, unit cells comprising many
hundreds of atoms or encompassing large volumes can
be used. By combining Monte Carlo or MD with
GIPAW, it has been possible to interpret the NMR
spectra of amorphous materials including vitreous silica,
calcium, lithium, and sodium silicate glasses, as well as
ceramics. An ensemble of glass models are obtained
using MD simulations, geometry optimization is used
to refine the structures, and then GIPAW is used to
calculate the NMR parameters; the NMR lineshapes
and multidimensional solid-state spectra can also be
calculated from the results because complete tensor
information for both shielding and EFG is available
from GIPAW calculations. Disordered systems can
require many calculations to be performed for different
configurations of a model structure. The wide distribution
of freely available and commercially available software
using the GIPAW method for calculations of chemical
shifts and EFGs has made it possible for chemists in
the pharmaceutical industry to use solid-state NMR of
cocrystals and amorphous solid dispersions to investigate
these forms as alternatives to more established solid
delivery forms, for example. The detailed structure of
catalytic surfaces, such as hydroxy apatite and silica,
has been investigated. Many more applications to the
determination of local structure disorder and dynamics in
the solid state may be found in the comprehensive review
of chemists’ application of GIPAW by Mauri et al.(!37

7 FUTURE DEVELOPMENTS

NMR parameters are extremely useful tools for studying
structure, dynamics, and environment. Their usefulness
is enhanced when measurements go hand in hand with
calculations. Theoretical calculations of shielding, J, and
EFG tensors for isolated small molecules are well in
hand. Using a hierarchy of approximations, the exact
solution may be approached systematically within CC
theory, for example. Relativistic calculations can now be
carried out in a theoretically rigorous manner with four-
component wavefunctions but only for small systems.
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Most calculations of NMR parameters are nowadays
carried out using DFT in larger isolated molecules, in
MD simulations in solutions, and in the solid state. This is
the most cost-effective method for calculations in larger
systems. In applications of DFT, the most important
choice is that of the exchange—correlation functionals.
However, no single functional currently exists that is
capable of providing reliable results for all properties for
all systems, or even the same property for all systems.
As we have seen, on using benchmark calculations of
high accuracy for a specific set of molecules, different
exchange—correlation functionals for different systems
can be found to perform somewhat better than others,
but none do as well as the accurate CC methods.®®
We have seen that in comparison to the accurate
ab initio calculations, none of the existing functionals
give sufficiently accurate results for NMR parameters.
There are additional difficulties associated with DFT
calculations of NMR parameters: the commonly used
functionals are known to provide a poor description
of the energetics of weak intra- and intermolecular
bonds. This can result in dramatic unit cell expansions
in solid-state calculations and unrealistic structures in
unconstrained geometry optimizations of weakly bound
and flexible systems. It is precisely in these cases
that DFT is the method that is used, as it would be
prohibitive to do coupled-cluster calculations of a large
number of configurations when studying dynamic and
disordered systems. The search for a more accurate
approximation for the exchange correlation functional
is still ongoing. This is probably the most important
development for the future. Heavy nuclei, particularly
transition metal nuclei, which are important components
of technologically important solid materials, cannot be
treated accurately until the problem of more accurate
functionals is solved.

The extreme sensitivity of shielding and EFG tensors
to intermolecular effects and local geometries (imposed
by longer range order and distributions) presents a
distinct advantage as well as difficulties for the use of
NMR as an analytical tool. Applications of calculations
of shielding and EFGs to interpretations and analyses
of complex systems require construction of appropriate
useful models that can be tested in simpler systems and
extended to complex ones. Since the various components,
short-range (geometrical, hydrogen bonding) and long-
range intermolecular contributions vary from system to
system, each system to be analyzed requires its own
model. Theoretical calculations of spin—spin coupling
constants are more difficult, even in isolated small
molecules, but are slowly becoming more tractable.
These have sensitivity to local geometries but are less
susceptible to intermolecular effects and long-range
contributions. Here too, the availability of more accurate

exchange correlation functionals would make a significant
difference.

ABBREVIATIONS AND ACRONYMS

B3LYP Becke, three-parameter, Lee—Yang—Parr

BDFT Magnetic Field Density Functional
Theory

BLYP Becke-Lee—Yang—Parr

CAS Complete Active Spaces

CcC Coupled Cluster

CCSD(T) Coupled Cluster Singles and Doubles

CDFT Current Density Functional Theory

CPMD Car and Parinello, Molecular Dynamics

CSGT Continuous Set of Gauge
Transformations

DFT Density Functional Theory

EFG Electric Field Gradient

FC Fermi Contact

FCI Full Configuration Interaction

GGA General Gradient Approximation

GIAO Gauge-including Atomic Orbital

GIPAW Gauge-including Projected Augmented
Wave

HALA Heavy Atom on Light Atom

HRPA Higher Random Phase Approximation

IGAIM Individual Gauges for Atoms in
Molecules

IGLO Individual Gauge for Localized Orbitals

KSDFT Kohn-Sham Density Functional Theory

LDA Local Density Approximation

LORG Localized Orbital/Local Origin

MAS Magic-angle Spinning

MBPT Many Body Perturbation Theory

MCIGLO Multiconfiguration Individual Gauge for
Localized Orbitals

MCLR Multiconfiguration Linear Response

MCSCF Multiconfiguration Self-consistent Field

MD Molecular Dynamics

MP Mgller—Plesset

NMR Nuclear Magnetic Resonance

NOE Nuclear Overhauser Effect

OD Diamagnetic Orbital

ONIOM Our Own n-layered Integrated Molecular
Orbital And Molecular Mechanics

OP Paramagnetic Orbital

PAW Projected Augmented Wave

PBEO Perdew—Burke—Ernzerhof Hybrid

ppm Parts per Million

QM/MM Quantum Mechanics Molecular
Mechanics

RAS Restricted Active Spaces

RPA Random Phase Approximation
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SCF Self-consistent Field

SD Spin Dipolar

SO Spin Orbit

SOPPA Second-order Polarization Propagator
Approximation

SOS Sum Over States

TMS Tetramethylsilane

UHF Unrestricted Hartree—Fock

ZORA Zeroth-order Regular Approximation
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