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The general concept of a density function for a molecular electronic property is considered. The origin
dependence of some electric and magnetic property densities is investigated and the nuclear magnetic

shielding density function is used as a typical example. Density difference maps which reflect the changes in
this electronic property upon molecule formation and bond extension are shown for the HF molecule and the

related systems, the H atom and F~ ion.

Molecular charge density maps have been widely used
in the physical interpretation of bonding, molecular
properties, and reactivities. Charge density difference
functions depict charge transfer and polarization, which
characterize the bonding in the molecule, or the changes
during the course of a chemical reaction, or the facili-
tation or opposition of nuclear motion. A review of ap-
plications of molecular charge distributions by Bader
indicates the utility of the charge density function.®

In a similar fashion, molecular electronic property
density functions may be useful in providing a physical
interpretation of gross differences between molecules
in the magnitudes of such electronic properties, their
dependence on nuclear configuration and conformation,
as well as more subtle differences or shifts which have
been observed in such properties: hydrogen-bonding
effects, intermolecular effects, etc. Density functions
will be of special interest for molecular electronic
properties which are not approximately the sum of
atomic contributions. In this paper we consider the
concept of molecular electronic property density func~
tions, discuss the origin dependence of some electric
and magnetic property densities, and select for illus-
tration the nuclear magnetic shielding density function.
This function is of special interest from the point of
view that magnetic shielding is very sensitive to small
changes in the molecule and is subject to very accurate
measurement,

THEORY

The concept of a property density function is not new.
For a charge distribution p,(r) the electric dipole mo-
ment is

u=jrpodr . (1)

We can define the electric dipole moment density u(r)
of the charge distribution by writing

u=fp.(r) dr , (2)
where
u(r)=rp, . (3)
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Similarly, the magnetic dipole moment due to a charge
distribution with a current density j(r) is given by

1
m=—

5 rxj{r)dr . (4)

Thus, the magnetic dipole moment density m(r) is
mir) = = rxi(r)= = rxalr) . (5)
2c 2¢

In the absence of electric or magnetic fields E or H, the
charge distribution p, gives rise to the intrinsic or per-
manent dipole moment of the system and the current
density j gives rise to the intrinsic magnetic moment,

In the presence of a finite uniform field, the additional
terms contributing to the moment can be expanded in
powers of the applied field. For example,

p=p @M@y ... (6)
- J[Po () + pf(x) + pE(r) + *+* Jrdr (7
—p @ @ E+iB:E e . (8)

The first-order correction to the charge distribution in
the presence of the uniform electric field, pf(r), is re-
lated to the electric polarizability as follows:

u“’=a-E=Ipf(r)rdr , (9)
which for our purposes can be written as

= [alr)- Ear (10)
in which a(r)* E =pf(r)r and

a=fa(r)dr . (11)

Thus, a(r) can be termed an electric polarizability
density. It yields the polarizability when integrated
over the volume of the system. Note that for systems
which have no permanent dipole moment, a(r)* E
=pE(r)r gives the electric dipole moment density in lin-
ear response. These definitions of electric polarizabil-
ity density and electric dipole moment density were
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used by Theimer and Paul® to calculate anisotropic light
scattering in a dense monatomic gas. They illustrated
the polarizability density by a quantum-mechanical cal-
culation of this function for the hydrogen atom.2 The
polarizability density has also been used by Oxtoby and
Gelbart in their theory for the polarizability of a pair
of interacting inert gas atoms.® Recent discussion of
the limitations of the concept of polarizability density
as applied to atoms and molecules has been given by
Sipe and Van Kranendonk, * and by Clarke ef al.®

Similarly, in a uniform magnetic field H, the mag-
netic moment m can be written as an expansion

m=m® +m® sm® 4. (12)
1 .
e [ e lio ()3 )3 ()4 -+« Jar (13)

0
=m"+x'H+"' , (14)
in which m®’ is the intrinsic magnetic moment and x * H
is the field-induced magnetic moment. The first-order
correction to the current density in the presence of a
uniform magnetic field, jff (r), is related to the magnet-
izability as follows:

mu>=X'H=721; rxif () dr . (15)

Thus, magnetizability density x(r) can be defined by
1
x(r)- H=5~ rxjf (r) . (16)

We see that electric and magnetic property densities
depend on the charge and current distributions of the
system.

Origin dependence of property densities

We can see that the electric polarizability density
function a(r) is explicitly dependent on the choice of
origin:

alr)- E=pf(r)r . (1

Similarly, the magnetizability density function y(r) is
origin dependent:

1 .
x(r) H=-rxji () , (18)
although the current density j(r) is itself origin indepen-
dent.

An electronic property which is related to magnetiza-
bility is nuclear magnetic shielding 0¥. The energy of
a diamagnetic system in a magnetic field is given by
—-3H* x+ H, where x* H is the induced magnetic dipole
moment which interacts with the magnetic field. The
energy of a nuclear moment in a molecule in a magnetic
field is —py+ (1-¢")- H. Interms of the current den-
sity, the shielding tensor o" is given by the following
energy expression:

1{ . .
By o H=-py- ;frerXJ{"(r)dr, (19)

where (1/¢) [7;%r, xjf (r) dr is the shielding field at nu-

cleus N. Thus, the nuclear magnetic shielding density
o¥(r) can be defined by

o¥(r)  H=-r,xjff (r)/cv} . (20)

Since the current density j(r) is origin-independent, the
nuclear magnetic shielding density e (r) is independent
of the choice of origin, in principle. Thus, the nuclear
magnetic shielding density function is a suitable choice
for illustrating the characterization and applications of
a typical property density function. The explicit origin
dependence of the polarizability density and the magne-
tizability density functions necessitates a considered
choice of origin except in cases (e.g., an atom) where
a natural origin exists. For the polarizability density,
there are some physical arguments which support the
use of the midpoint of the line from the center of posi-
tive charge to the center of negative charge, as the
most meaningful origin choice.® Previous polarizability
density calculations®® were not subject to origin-
dependence ambiguity since they assumed atom-additive
densities.

In the previous discussion we found that electric and
magnetic property densities can be calculated from the
charge and current density of the system. Let us con-
sider our system to be a single molecule. In the
Schridinger formulation of the quantum theory, the ex-
pressions for the charge and current densities for a
system with a single electron are taken to be, re-
spectively,”

p(r) = - e¥*¥ (21)

and [neglecting the contribution of electron spin to j(2)]
- 2

§) = =8 (wrvy —uves) - - Aury | (22)
2im me

where A is the magnetic vector potential. Due to the
field H, A=A, in its simplest form is given by 3H xr.

¥ is a normalized solution of the generalized wave equa-
tion. ¥ can be expanded in powers of E or H:

Y=g L EFD L E2H® 4oee op §= O
+HYD g3 4l (23)
Thus, the electric dipole moment density is given by

ﬂ.(l‘) = - e\p(ﬂ)*rq,(o) - e(\p(l)*rq,(ﬂ) + \I,(O)*r\l,(l)) cE 4 ,

(24)
which when integrated over r gives p @+ @ E++++ .,
The current density can likewise be expanded as

§0e) =jolr) + 7' (£) + g (2) 4+ 0+, (25)
in which
jo{r) =0 (in molecules which are symmetric
under time-reversal ¥‘*’ is real and
the current density vanishes at all
points in the absence of H. In the
presence of H, ¥*) is imaginary.)
and
i) =- _e_.}il (P g g0 _ p @ xgg )
im
& 0 0
_£ Oy (0)
— AV OrY , (26)
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and the magnetic dipole moment density is given by

(1/2¢)(r xj(r)).

From Eq. (24) we see that the electric polarizability

density is given by
a(r) = —e(¥ ¥ ® + O xpy)) (27

and from Egs. (16) and (26) the magnetizability density
is given by

X(l‘)=— (\If‘”*r XVUO _ yOp qu,(l)*)

2ime

2
- ¥O(r e rI-rr)¥® (28)

4mc
Similarly, using Egs, (20) and (26), the nuclear mag-
netic shielding density can be defined as

cr"(r) __E(q;(l)*r X0 -

T Op, xVELIx)
rmer,

W \I/(o)(l‘ rl - rr,()‘lf‘o’ - (29}
¥V is the first~order correction to the wave function in
the presence of an E or H field along the x, y, or’'z di-
rection. In a one-electron system ¥(») is a one-
electron function and so are ¥‘¥’, ¥, etc. In a multi-
electron system, in the context of the Born-Oppenheimer
approximation, ¥ should be a multielectron function,
such as the Kotos—Wolniewicz® function for H,, with a
parametric dependence on nuclear configuration. How-
ever, since such functions are not available for most
molecules, we will consider the property densities in

the context of the Hartree-Fock approximation using

the density matrix formulation of McWeeny, ®1°

We consider n occupied molecular spin orbitals ¢,
¥sy *** Pn, each of which is constructed from m ortho-
normal basis functions ¢,, ¢, *** ¢,

y=¢T . (30
The spinless density matrix P is defined by

P=2R, (31)

R=TT' (32)

A sufficient condition for stationary energy is that the
columns of T are eigenvectors of

(33)

The form of the Hamiltonian depends upon the electron
distribution through the electron interactions, and hence
upon the density matrix R:

h=f+G(R) ,

hc=¢c

(34)

where f is a framework Hamiltonian including only the
potential energy due to the nuclei, and the electron in-
teraction matrix G is that defined by Roothaan.!! Given
a self-consistent solution for an unperturbed system

with R® and £©’, the expansion
R=R% R + ¥R® 4+ -+ (35)

corresponds to the self-consistent solution for the per-
turbed system, with
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F=fO 4 af D L NZE@D 4 e . (36)

The density matrix R resolves into its components!®

R{}’=R{’ = 0 and R{)’ =R{}’". Thus,
R(l) = R(1)+R(1)T X+XT (37)
and we need to determine only one component R{}’. R}

may be determined more conveniently in terms of the
eigenvectors of hy!®:

m

=E €iC CT

§=1

) (38)

which yields

" 0CC UROCC A(l)
X=R§2)= CrCL ’ (39)
€, — €
r S
where
AL =CLHEY L GRANC, (40)

In achieving self-consistency it is then only necessary to
revise the coefficient of C,C! in Eq. (39) using an itera-
tive procedure. Alternately, the coupled linear simulta-
neous equations (39) may be solved by standard numeric-
al techniques.

Here, we may write'?

U= af4 pfle oov (41)
£2 = g% 4 % 1 ap 04 o (42)
where, for magnetic properties, in atomic units
a=c?py, b=H, (43)
=My/7r3, '=:M; , (44)
=(ry-rl-rry)/2ri, f¥=(r-rl-rr)/8 (45)

M denotes the angular momentum operators Mgy =ir XV
and My =-iryXV. This paper deals with magnetic
property densities. Molecular electric property densi-
ties will be treated in a separate paper.® The energy
term of interest in the case of nuclear magnetic shield-
ing is'?

my oV H=2¢ 2 tr[t*R° +1°R] (46)

The components of the nuclear magnetic shielding tensor
in atomic units {the H-atom shielding in a.u. is ¢2/3
=17.75 ppm) are

Uga=2(,‘-2tr[-l-(rN. l'Ia—l'l'N> R0+(M¥)g_ RB(UZ)MH] (47)
2 v ab N

N

for the a component of uy and the 8 component of H. In
the case of the magnetizability the energy term of in-
terest is

—1H - x- H=2tr[f?R°+3°R?]
The components of the magnetizability tensor are given
by

Xas = = te[5(r - £ T=r 1) RO+ (M), REV/2 4] |

(48) -

(49)

The elements of the density matrix in the basis of un-
perturbed molecular orbitals zp?,, g=1,..., m are obtained
by solving the simultaneous equations
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1 1
(1B _ el vﬂ
Ra €& {Zi (> VY
n m
£33 RGP (gt us) +(qults)] } (50)
t=1 u=n+l

Thus, the components of the nuclear magnetic shielding
and the magnetizability tensors are given by

n af
N oL ry'rl-rry
Tas Z( ry ¢

t

+ Z Z 2R(1)B<r1vxv ¥ (51)
and
1 aB
EZ r-rl-rr)¥
t
21 E Z RS ("xv) (52)
$q

In terms of the atomic orbital basis functions the nu-
clear magnetic shielding density function is-

U’Zs (r)=c? Z Z (3 P?A ¢, (@ Ty B4 — 7o wa)/75) B,
v A

+ P2 o (ry xV/ird), ¢,] (53)
and the magnetizability density function is:
Xas(r)=— % Z Z 3 P26, (72805 = 7o7s) 0,
+PYP ¢, (rxV/i)a0,] ,  (54)

where the elements of the density matrices in the atomic
orbital basis are

n

P, = Z 2a%,al, (55)
=1
and
PR = ZZ 2R (a8, 0 ~a%al) . (56)

=1 s=n+1

Shielding density difference functions and maps

We can define density difference functions which may
be useful in understanding (a) the chemical shielding in
a mpolecule in its equilibrium configuration, and (b) the
derivative of chemical shielding with respect to bond
extension. The shielding density difference function
due to molecular bond formation can be defined as!?

(57)

This density difference function illustrates the change
in the atomic shielding densities resulting from the for-
mation of the chemical bond. It provides a measure of
the distortions present in the molecular shielding dis-
tribution relative to the original atom shielding density.
Many chemical effects can be investigated using this
difference function, e.g., effects of substitution of

a0 (£)y =6* () molocuie. = 0% (T srom
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groups, changes in conformation, etc. Ideally, o{#) for
both systems should be calculated using basis sets of
the same quality, which may necessitate use of ghost
orbitals on the smaller system.

The density difference function due to bond extension
provides a physical interpretation of the derivative
(30/8AR). For simplicity let us consider a diatomic
molecule with the following equilibrium coordinates:

R¥M =X xee (58)

Let N be the nucleus of interest. The bond extension

AR is

AR=(Xy - X2 = (Xy = X3 , (59)
and

(30" /8AR), = (80" /0X,) —(80% /28Xy ), {60)

- f [(30¥(r)/8X ), - (0¥ (r)/ X} ). ) dr .
(61)

If an arbitrary space-fixed origin is chosen, about
which o”(r) is expressed, and nucleus N is displaced,
there will be large cancelling terms due to that part of
o”(r) which “follows” nucleus N. The rest of the terms
will be due to a “relaxation” of the shielding distribution
during the displacement of nucleus N. This is analogous
to the determination of force constants from charge den-
sity diagrams.'* It is clear that insight into the nature
and magnitude of 30/3AR can be obtained by isolating
the relaxation of the shielding distribution from its rigid
following. This can be done by using a moving frame of
reference.

Consider o¥(r) expressed in terms of a coordinate
system centered on nucleus N (the coordinate system
therefore moves with N). This corresponds to the
shielding distribution o¥(r) being expressed as ¢"(a,r,),
in which o are the parameters, e.g., linear coefficients
in an orbital wave function, which are functions of nu-
clear position in the Born-Oppenheimer approximation.
In the special case where all of ¢"(a,r,) rigidly follows
N, a would be independent of X, and there will be no
contribution to 8¢ /8AR. Thus, the entire contribution to
80/9AR is due to a relaxation of the shielding distribu-
tion during the displacement of nucleus N,

The recommended procedure (in a diatomic molecule)
is to displace N, but fix N’ so that the entire displace-
ment is reflected in the change of X:

80" (a,ry)/ 80X,
= 8{0’ N(Q, r”)ri id
follo

+0N(Q, rx)re]ued]/SXx. (62)
wing

Since the derivative of the first term inside the brackets
is zero,

(90 /8AR), = f 8lo" (@, ry)reinxea ]/ 80Xy (63)

Note that the portion of the shielding density in the vi-
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cinity of M will in general not follow the displacement
of nucleus N, and hence, when expressed in coordinates
centered on N, will appear to relax with respect to
motion of N.

The density difference diagrams representing the re-
laxation with respect to displacement AR may be con-
structed by subtracting the equilibrium shielding dis-
tribution with nucleus N held fixed in space and N’ dis-
placed (in the moving frame of reference attached to N,
N appears stationary), i.e., the density difference due
to bond extension is

ao*(r)=o"(ry)p—0"(ry)s, , (64)

where R, denotes the molecule at equilibrium and R
that in which N is displaced. This difference function

C. J. Jameson and A. D. Buckingham: Molecular electronic property density functions

is obtained most easily if the grid of points for which
o¥(r) is calculated is always taken with respect to cen-
ter N, whose shielding is being determined, as opposed
to with respect to the molecular origin. The grid will
be unchanged for the extended molecule and also will be
unchanged for a different choice of gauge origin.

Practical gauge dependence of nuclear magnetic shielding
and nuclear magnetic shielding densities

Although ¢ ¥ and o”(r) are gauge independent in prin-
ciple, it is well known that, in practice, some funda-
mental properties of the true wave function do not hold
for approximate wave functions, leading to different
results for calculations using different gauge origins. 15

- We will consider two origins and explore only the trans-

lational invariance of the shielding. For r=r, + Ar,

ol.=c? Z (rfoa+ryA¥ 645 — Vyolrys + AV /7 + 72 ZZP‘”'“ (May/v3 (85)

o hs=c? Y ([rd Bug+ 7w AY Bug — Twslrya + Ar )]/ 7+ YN POBM /7 .

(86)

In principle, the difference between the shielding tensors calculated using two different origins separated by Ar is

c'ZZ([rN A¥ Bog =~ Tyg A¥sTH) + c'ZZ Z(P“"”‘ - PO (M /YD =0 ,

and

Y [y A7 Bag = ¥yg A7)/ 7R) +¢HY Y APV B PONM /7)) =0,

However, since the second group of terms in Eq. (67)
is not calculated with accuracy equal to that of the first
sum of terms, in practice this difference is generally
not zero, It also follows that in practice the difference
between the shielding density functions o¥ (r) calculated
using different gauge origins will not be zero.

The number of unique nonzero elements of the nu-
clear magnetic shielding tensor o is determined by the
symmetry of the site at which the nucleus of interest
is located in relation to the molecule as a whole, the
“nuclear site symmetry.” The number of unique shield-
ing components for various nuclear site symmetries
has been determined by Buckingham and Malm. 18 1n
general, ¢ % 0z, SO that nine independent elements
are required to specify fully the shielding tensor. How-
ever, in molecules possessing some symmeiry, the
nuclear site symmetry may be sufficiently high such
that as few as one or two elements are unique and
nonvanishing. Since symmetry is preserved in going
from a full (infinite basis set) to a limited basis set,
calculated o,, elements will still be zero or nonzero
according to site symmetry. While the integrals o,
may be zero, the integrands, which are the densities
o¥;(r) in Eq. (67), will not vanish for any af. These
density functions will present antisymmetrical features,
as will be seen in densities for spherical systems such
as the H atom and F~ ion.

for og, (67)

for o, (68)

The difference between Eq. (65) and (66) (g4 — 0,4)
should vanish whenever nuclear site symmetry dictates
that these elements be equal. Since symmetry is pre-
served in going from a full to a limited basis set, the
calculated g, — 0,5 Will indeed vanish. On the other
hand, the calculated density difference function oj, (r)
- oﬁs(r) will not necessarily vanish. The terms

D PG Moy /7Sy~ PA® b Moy /v 3,

will generally not vanish unless @ and 3 are related by
symmetry because P5,1’* and P{L"® can not be calculated
with absolute accuracy. This is another measure of
the extent to which approximate wave functions do not

satisfy the conditions for gauge invariance.

RESULTS

Since the nuclear magnetic shielding density function
does not have an explicit origin dependence, it has been
chosen to demonstrate the concept of the molecular
property density function and to investigate its utility.
Calculations of these functions were carried out for the
following species: H atom, fluoride ion, and HF mole-
cule. The species were chosen for the following rea-
sons: The hydrogen atom shielding density can be ex-
pressed analytically and provides a known quantity with
which approximate density functions can be compared.

J. Chem. Phys., Vol. 73, No. 11, 1 December 1980
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The HF molecule is the smallest stable molecule con-
taining both a proton and a nucleus which behaves as

a typical “heavy” nucleus. It is well known that the
shielding of 19 and other heavy nuclei can be dominated
by the paramagnetic term (as defined by the choice of
gauge origin at the nucleus in question), and cannot be
interpreted by extrapolation of insight gained from very
accurate calculations of shielding in light nuclei such as
'H and ®He. The fluoride ion completes the set since
the HF bond is highly ionic and comparison between the
19% pucleus in the HF molecule and in the F~ ion would
be useful.

The display of the density function as a surface offers
the best opportunity for visualization and comparisons.
Nuclear magnetic shielding density maps were con-
structed using a grid of xy, vy, and zy values for the
points at which shielding densities are to be calculated.
As discussed earlier, difference densities are ob-
tained most easily if the grid of points is expressed
with respect to the center N whose shielding is being
determined, rather than with respect to a molecular
or space-fixed origin. All figures shown here are
maps of the shielding density for the x,=0.0625 a.u.
plane, which presents essentially the same mapping
as the xy =0 plane, without the attendant calculational
difficulties due to singularities of the function. The
molecular z axis is chosen along the F-H bond in the
molecule. To display the features of the surfaces in
figures of comparable size, the vertical axis is scaled
as needed and truncated where necessary.

The density functions for 'H shielding in the hydrogen

FIG. 1. 'H shielding density plots for the hydrogen atom.
The density plots shown are for the x =0.0625 a.u. plane, for
the components (a) 0,,, (b) 0,,, () (0, +0,,+0,,)/3, (d)

e (1/2) o, - (1/2)0'”.], (e) o,,, (f) O,y and (g) o,,.

1\

S

FIG. 2. UF shielding density plots for the F~ ion. The density
plots shown are for the x =0.0625 a.u. plane, for the compo-
nents (a) o,,, (b) 0,, (c) o, truncated in order to show the fea-
tures on an expanded density scale, (d) (o,,+a”+ou)/3, (e)

Oyer (£} 0y, (g) 0y, and (h) —[o,, —(1/2)0,, — (1/2)0,,).

atom, shown in Fig. 1, have a very simple mathemati-
cal form. For example, for the zz component,

1 x2%4 92
20l ——7—,%’— exp(-27) . (69)

oe(r) =

The density maps shown in Fig. 2 for various compo-
nents of the '°F shielding in fluoride ion show essentially
the same features, although the density functions are
not as conveniently written down in analytic form.

The density maps for the components of the 'H shield-
ing tensor and the trace of the !°F shielding tensor in the
HF molecule at its equilibrium configuration are shown
in Figs. 3-5. The calculations for the HF molecule and
fluoride ion were carried out using the Lie-Clementi
basis which yields a near-Hartree-Fock energy for the
ground state.!” Figures 3 and 5(a) are the 'H and °F
shielding density maps for r and My defined with the
origin at the F nucleus, winereas Figs. 4 and 5(b) are
with the origin at the H nucleus. The shielding density
maps are different for different gauge origins, as are
the integrated values which had previously been re-
ported by Day and Buckingham, 5 In principle, neither
the nuclear magnetic shielding nor its density function
are gauge dependent. However, in practice, the limita-
tions of the basis set used, as well as the deficiencies
of the coupled Hartree—Fock method, give rise to some
gauge dependence since the conditions for gauge invariance
are not satisfied. This gauge dependence willbe discussed
further. Figures 3 and 4 show that there are sizeable
contributions to the 'H shielding in the HF molecule from
the region around the fluorine nucleus, The F shield-

J. Chem. Phys., Vol. 73, No. 11, 1 December 1980
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FIG. 3. H shielding density plots for the HF molecule, with gauge

origin at F. The density plots shown are for the x =0.0625 a.u.
plane, for the components (a) 0,,, (b) 0, (c) (o, +0,,+0,,)/3,
(@) (0,~a), (e} -0, ) o,, and (g) o,,.

ing density plots in HF are not nearly as interesting
since they have features very similar to that of the
fluoride ion, with small confributions from the vi-
cinity of the H nucleus. Thus, only the trace is shown
in Fig. 5,

We have calculated the (HF molecule - H atom) shield-
ing density difference maps for the 'H nucleus. One is

FIG. 4. 'H shielding density plots for the HF molecule, with gauge
origin at H. The density plots shown are for the x=0.0625 a.u.
plane, for the components (a) 6,— 0y, (b) 0y, (¢} 0, (d) gy,

and (e) —o,,.

C. J. Jameson and A. D. Buckingham: Molecular electronic property density functions

FIG. 5. F shielding density plot for the HF molecule (a) with
gauge origin at ¥, (b} with gauge origin at H. The function
plotted is the isotropic average (o, +0,,+0,,)/3 for the
x=0.0625 a.u. plane.

shown in Fig. 6, in which we see a rather pronounced
difference in densities between these two systems. The
density difference map clearly shows the substantial
contributions from the region near the F nucleus to the
'H shielding upon molecule formation, We have also
calculated the (HF molecule - F ion) shielding density
difference maps for the *F nucleus. Two of these are
shown in Fig. 7. Since the HF molecule has a fairly
high ionic character, the fluoride ion rather than the
fluorine atom is used for comparison with the mole-
cule. The fluoride ion calculation was carried out using
the same basis set as for the HF molecule, i.e., includ-
ing ghost orbitals, to ensure that this comparison is not
invalidated by a difference in basis set size. In con-
trast to the 'H shielding, the ¥F shielding difference
map shows very little contribution from the region
around the other nucleus. It also shows the asymmetry
in the °F shielding density which arises as the presence
of the proton distorts the charge distribution of the
fluoride ion.

Figure 8 shows the (HF,, - HF,,) difference map,
where the HF,,, denotes an HF molecule in which the
bond is extended by 0.1 a.u. beyond the equilibrium
configuration. As discussed earlier, this difference
map provides a physical interpretation of the derivative
(s0/8AR). From these maps we can see that the por-

tion of the shielding density in the vicinity of the H nu-
cleus contributes very little to 36" /9AR. This is not
surprising in view of the observation that the shielding
density function ¢*(r) in the HF molecule shows very
little contribution from the region of the H nucleus (see
Fig. 5).

While it is perhaps too soon to generalize

FIG. 6. 'H shielding density difference map for the HF molecule
minus H atom. The difference map of the isotropic average
— A0y, +0yy+0,,)/3 is shown.

J. Chem. Phys., Vol. 73, No. 11, 1 December 1980



C. J. Jameson and A. D. Buckingham:

s
S
S S SO S
T e T
S S S TS OS
o L
S S S S S
N e
oS

FIG. 7. ®F shielding density difference maps for the HF molecule
minus fluoride ion. The components shown are (a) —Ao,, and
(b) —Aac,,.

our finding to other fluorides, our results are at least
consistent with the observation that empirical values

of 0¥ /8AR have the same sign and nearly the same
magnitudes for different molecules (e.g., SiF,, CF,,
and BF;). 18 On the other hand, Fig. 8 shows that there
is a sizeable contribution to 867/8AR from the region
near the F nucleus. This too is consistent with experi-
ment. While there is relatively little empirical in-
formation about 80”/9AR in various molecules, what
is available does indicate that this derivative is nega-
tive in Hy, HCI, and HBr and has a magnitude which
varies by as much as a factor of 20,192

Figure 9 illustrates the gauge dependence of the nu-
clear magnetic shielding density in practice. The den-
sity difference for *F or 'H shielding using two dif-
ferent gauge origins should in principle be zero every-

FIG. 8. Shielding density difference maps for the HF molecule
upon bond extension, HF at R,+0.1 a.u. minus HF at the equi-
librium distance. (a) and (b) show the 5F shielding density dif-
ferences —Ag,, and ~Aco,,, respectively. The rest of the dens-
ity difference maps are for 'H shielding: (c) —Ag,,, (d) - Ad,,,
(e) —Alo,~a), () Ao, () Aoy, and (h) - Ao,
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FIG. 9. Shielding density difference maps for the HF molecule,
indicating the difference between calculations with gauge
origin at F and gauge origin at H. In the absence of any prac-
tical gauge dependence, these maps should be zero every-
where. (a) shows the difference for the xx component of *F
shielding and (b) shows the difference for the xx component of
'H shielding.

where. The density difference shown in Fig. 9 inte-
grates to a very small number in the case of F shield-
ing, since the + and — parts of the surface nearly can-
cel. This illustrates one of the effects of moving the
gauge origin from a favorable (according to the criteria
stated by Moccia, for example?!) to a less favorable
center, which is to generate large cancelling + and -
terms. In the case of 'H shielding the contributions
centered at F are less accurately calculated when the
gauge origin is at the H center. The integrated values
have been calculated by Day and Buckingham {27. 266
and 35. 777 ppm for origins at F and H, respectively). !
Figure 9 clearly shows that the contributions from the
vicinity of the F nucleus are the ones which lead to a
larger 'H shielding parameter when the gauge origin

is chosen at the H rather than the F center. The origin
dependence observed here assesses the degree of ac-
curacy of the wave function in those regions of space
where circulation of charges is induced by magnetic
fields.

Figures 1 and 2 show the antisymmetry of the densi-
ty functions o¥,(r) (a#8) for the H atom and F ion, re-
spectively. For these spherical systems «, 8=x, y,
and z are all related by symmetry so these densities
integrate to zero as expected. For the sites of
both the 'H and !°F nuclei in the HF molecule (with
the 2z axis along the bond), x and y are related by sym-
metry. Figure 10 shows that the difference function

S

s o e

e S

e
S S

FIG. 10. Shielding density difference maps for the HF molecule,
indicating the difference between the off-diagonal tensor com-
ponents of the 'H shielding densities: (a) shows the density dif-
ference o, —g,, and (b) shows the difference o,,—0,. Note
that o,, is the shielding tensor element correspondizig to the

y component of u y and the z component of the applied magnetic
field, whereas o, is the shielding tensor element correspond-
ing to the z component of uy and the y component of the applied
field. For the nuclear site symmetry of H in HF, these ele-
ments should be equal. Any difference observed must be a
manifestation of the practical gauge invariance of the shielding
calculation.
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o), (r) — o}, (r) does not vanish as it should in principle,
indicating the inadequacy of the P{!’® and P{!® calcula-
tions. Similarly, o¥ (r)-o% (r) is nonvanishing. On
the other hand, the function ¢2,(r) - 0%, (r) (not shown)
is zero everywhere because of symmetry.

CONCLUSIONS

We have discussed the general concept of a density
function for a molecular electronic property. We have
considered the origin dependence, in principle as well
as in practice, of some electric and magnetic property
densities. We explored the use of property density
maps and density difference maps for the interpreta-
tion of changes in an electronic property upon mole-
cule formation and upon bond extension. The utility
of this concept appears promising.?* We foresee an
important application in providing a physical basis for
or against qualitative interpretations of chemical ef-
fects on NMR shifts or other electronic properties.

Any arguments based on constructs such as inductive
effect and the like can be tested against density differ-
ence maps which do show where the contributions to

the shifts are coming from. For example, a density
difference map for 'H shielding (hydrogen-bonded dimer
minus isolated monomer) would be a good starting point
for the discussion of hydrogen bonding shifts. This
would be an improvement over a discussion of hydrogen
bonding shifts based entirely on two calculated numbers,
the calculated shielding parameters themselves, i.e.,
the integrated values. Property density difference maps
for two or more related properties may be compared
with one another and may also be compared with charge
density difference maps. Such comparisons will elicit
the changes in a given electronic property which ac-
company the polarizations and charge shifts shown by
the charge density difference maps. They will also
indicate the similarities and differences of two related
properties and to what extent they assess different
parts of the wave function or are measures of the same
phenomenon. The variety of possible applications of
property density maps appears to be virtually unlimited.
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