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The mass and temperature dependence of the mean bond displacements in carbonyl fluoride have
been determined using a modified Urey-Bradley field, by solving the set of coupled equations
relating mean bond displacements (AR ¢} and (Arco ) to mean square-vibrational amplitudes
{{AR c£)*),{ArAR ), etc. To these vibrational terms the rotational (centrifugal distortion)
contributions are added. The results are applied to the interpretation of the temperature
dependence of the °F nuclear shielding in O = CF, at the zero-pressure limit. By fitting the
observed [oy(T') — 0,(300)] for T = 250-350 K an empirical value of (do/dArcg), = — 1146 ppm
A~ 'is obtained. This derivative is used to calculate the NMR isotope shifts from the mass
dependent (AR 5 ). The calculated value, [o,('°*0"*CF,) — o,('°*0"*CF,)] = — 0.096 ppm, is in
good agreement with our measured value of — 0.117 ppm. From the fitting to the temperature
dependence of o, we also get o, — 0, (300 K) = 7 ppm. This and the absolute shielding o, (300
K) = 221.6 ppm yields an estimate for '°F shielding at the equilibrium configuration, o, ~229
ppm. The errors which are associated with these values are discussed.

INTRODUCTION

The temperature dependence observed in the NMR
chemical shifts in the gas phase in the zero-pressure limit has
been interpreted in terms of the existence of a nuclear mag-
netic shielding surface which together with the intramolecu-
lar potential energy surface determines the rovibrationally
averaged values of the shielding.' In practice the latter is
measured as the residual shifts of the nuclear magnetic reso-
nance frequencies with temperature after the intermolecular
(density dependent) effects have been removed. The same
interpretation is used for NMR isotopic shifts, measured as
differences in resonance frequency between a nucleus in two
different isotopomers, in which the isotopically substituted
atom is one or more bonds away from the observed nu-
cleus.*” The derivatives of the nuclear shielding surface and
the average displacement coordinates provide a standard
way of expressing the temperature dependence of the shield-
ing [0o(T') — 04(300]:

ofT) =0, + 2 (d0/3g,).{g.)" + 1152 (azg/aqiaqj)
hi

X{g,g) "+ . (1)

The thermal average of the dimensionless normal coordi-
nates vanish for the linear term except for the totally sym-
metric normal mode. When only the leading linear term is
considered, the problem is most easily solved for molecules
of high symmetry. Thus, we have previously treated diatom-
ic molecules of D_, (F,,N,) and C_, (CO,CIF) symmetry
and polyatomic molecules of O, (SF,), T, (CF,,CH,,SiF,),
D, (BF,)symmetry.” In these cases there is only one totally
symmetric ¢g; and it is therefore expressible entirely in terms
of the bond displacements Ar. To lowest order, the bond
angle deformation (da) has a vanishing average since it
does not appear in the totally symmetric normal coordinate.
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Thus, in the previous work, we have correlated the observed
temperature dependence of the shielding [0,(T) — 0,(300)]
with the temperature dependence of the mean bond displace-
ment (4r)7T:

oo T) =0, + [(do/34r,),
+ (00/34r,), + -~ 1{4r) T + . (2)

Since the nuclear shielding is very much a localized proper-
ty, the effects of bond stretches remote from the observed
nucleus can be reasonably neglected. Furthermore, in mole-
cules of high symmetry such as those which we have pre-
viously considered, there is only one (4r) to be considered

oolT) =0, + (do/34r),{4r) + -, asfor "°Fin CF,,
or (3)
ooT) =0, + n(da/34r).{4r) + -, as for *Cin CO,.

Therefore, our previous work has been on calculations of
(4r)” from the anharmonic force fields of these molecules.
The fitting of the temperature dependence of (4r)7 to the
temperature dependence of [0(T') — 0,(300)] has resulted in
empirical values for (Jo/34r),, the derivative of nuclear
magnetic shielding with respect to bond displacement.®

If the molecule has no more than three atoms, the an-
harmonic force field can still be described in terms of cubic
and quartic force constants without use of simplifying mod-
els. In triatomic molecules there are just enough indepen-
dent measurable spectroscopic constants to determine the
nonvanishing third and fourth derivatives of the potential
surface.” For linear triatomics such as NNO and FCN, the
temperature dependence of the middle nucleus involves two
bond displacements

0olT) = 0, +(80/34r) (Ar)T + (80/8Ary), (Ar)T + - .
@)

In bent triatomics such as H,Se the totally symmetric vibra-
tions involve bond angle deformations. In these cases, both
{(4r)T and (4a)” contribute (to lowest order) to the tem-
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perature dependence of the shielding, of "’Se in H,Se, for
example. These molecular types, the unsymmetrical linear
and bent triatomic will be treated elsewhere.®

To go beyond these special cases, we need to consider
molecules of lower symmetry and more than three atoms. In
this paper, we consider planar tetra-atomic molecules of C,,
symmetry YAZ, type of which O = CF, is an example.

In the calculation of (Ar)T we have made use of two
approaches. One is to use the results from the perturbation
theory (or the equivalent contact transformation theory) of
rovibrational energies.® These give an explicit relationship
between (g) and the cubic force constant and harmonic fre-
quencies of vibration

<q:> = - {3]{5;(0; + 1/2) + 2’ kiss (U: 4+ 1/2)]&},_ 1.
(5)

The centrifugal distortion contribution to {g, ) must be add-
ed to the expression and the transformation to the internal
coordinates (4r) carried out. The application of this method
depends on the availability of cubic force constants for the
molecule. Determination of the cubic force constants usual-
ly requires that the quadratic force field be well known and
additional precise spectroscopic information such as vibra-
tional-rotational interaction constants, anharmonicity con-
stants, etc. be available too. This method is best applied to
triatomics or molecules of very high symmetry, in which
only a small number of cubic force constants are required.
We have used this method in our previous work almost ex-
clusively.

The second approach that we have used is that of Bar-
tell.'° This has the advantage of not requiring explicit knowl-
edge of the cubic force constants of the molecule. The anhar-
monicity of the force field is instead expressed in terms of
specific models. For anharmonicity of the stretching modes,
a Morse model is used, in which the explicit relationship
between the Morse parameter a, vibrational frequency, and
dissociation energy (which holds strictly only for a diatomic
molecule) is applied to a polyatomic molecule. Other contri-
butions to anharmonicity are included by introducing a pa-

rameter such as F? which is obtained by using a model po—l

tential function (e.g., Lennard-Jones) for nonbonded
interactions. In Bartell’s method, a set of coupled equations
characteristic of the molecular type relate the desired mean
displacements (in this case (4r) and (4R )) and the easily
calculated mean square amplitudes of vibration
[{(47)),{ArAR ),{{AR ) etc.]. Thus, this is the preferred
method for molecules of lower symmetry.

In the following section we present a general method for
calculations of different (4r) for molecular types with a cen-
tral atom and negligible mean bond angle displacements.
This model is based on a modified Urey—Bradley treatment
of the potential energy. In a later section we apply this model
to the YAZ, molecular type, where we have to consider two
different mean bond displacements (A4r,y ) and (Ar, ;).
We also include centrifugal distortion due to molecular rota-
tions. Numerical examples for four isotopes of carbonyl
fluorides are given. In the last section we correlate the calcu-
lated (A7 ) to the previous measurement of o,(T') for '“F in
O = CF,. We also discuss isotope effects on o, in terms of
the same dynamic effects.

MEAN BOND DISPLACEMENTS DUE TO VIBRATIONAL
EFFECTS

For molecules with lower symmetry especially mole-
cules with nonequivalent bonds, the calculation of the
change in bond length due to anharmonic vibrations is still
an open problem. In this section we develop a general model
for the calculation for molecules with one central atom A,
but nonequivalent bonds, like YAZ,YAZ,,..- . This model
assumes that all changes in the mean bond angles can be
neglected. When all the bonds are equivalent and all bond
angles are determined by the symmetry of the point group,
this treatment is valid. It is also approximately valid when
the bond angle displacements sum to zero and the mean
bond angle displacements nearly sum to zero. Examples are
near-tetrahedral molecules such as substituted methanes
and near-trigonal-planar molecules such as substituted bo-
ron halides. The possible expansion of this model to include
nonvanishing mean bond angle changes will be reported lat-
er. These calculations are based on an idea first published by
Bartell.!*"!

Only for a few molecules is the general force field, including anharmonicity terms, known. In most cases we have to
assume certain model potential functions. It was shown'? that a modified Urey-Bradley (UB) potential function'? describes
vibration very well. The “classical” UB-field type of potential function is expressed as'*

V= 2 [K;?'fAri + %Ki(A’f)z] + z [H;jr?jAaij + %Hij("ijAafj}Z] + 2 [Fx{jqiquij + %‘Fx’j(Aqij)z]’ {6)

i<j

i<j

where 7 is the bond length, o the bond angle, ¢ the distance between atoms not bonded directly, and 7,; represents (r,.rj)” 2K,
K, H', H, F', and F are the bond-stretching, angle bending, and repulsive (between nonbonded atoms) force constants.
Through the relations g2 = 72 + r? — 2r,r; cos @,; We can express Ag;; in terms of Ar;, 4r;, and Aa,;'*:

Ag,; =s,4r, +5,4r;, + (t,jtji)‘/zrijAaij + {23(Ar)? + t5(4r) — 8,;8;:(r;Aa,)? — 28, 4r,4r;

+ 2t,;5;,4r,(r,da;;) + 2t;,5,,4r,(r.4a;;)}/2q,;,
where

s ={r—rc08a,)/q,;, 8= {r; —ri cosa;;)/q;;

j

=rsina;/q;, !

(7)

=0 sina;;/q,;- (8)

In these equations, 7,, 7;, ;;, and g; denote equilibrium values. From Egs. (6) and (7) the potential energy is obtained as a

function of internal coordinates:
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=y [K,fr,- + ZFi’J-s,-jq,-j](Ar,») +1> S [Hjrr + Fyrir;sina,; |(da,;) + Z lK,- + > (i F; + spFy))
: JZi ;

i js&i

J#Ei

X(Ar,.)z +1 z z [Hijrirj — 88,00 F  + tijtjirierij](Aaij)z +1 z z [ - tijtjiF;j + SijsjiFij](Ari)(Arj)

T jFEi

+ 2 [tsnFy + tsynFyy 1 (Ar)Aay,).
T jAi

The first two sets of terms vanish as a consequence of
the minimum potential energy condition for the equilibrium
configuration. To also take into account the anharmonicity
of vibrations we must modify the UB potential. As Bartell'®
suggested, we include the following terms:

Vo= SI/60KIAnP +1 3 3 (1/69,)F(dq, P (10)

(neglecting bending anharmonicity).

It seems reasonable to express the stretching part of V as a
potential function similar to that of a diatomic molecule. If
the Morse function'®

V=De[1——exp(—aAr)]2 (1
is used, it can shown that!®
K3 = — 3aKr,. (12)

The quantum mechanical law of motion applied to a
wave packet is given, in Cartesian coordinates, by

i)

In our molecular applications the system will be in station-
ary states or an equilibrium distribution among stationary
states. Since the space average displacement (x) is indepen-
dent of time in such a system, it follows that the space aver-
age force is zero, or

(V /dx) = 0. . (14)

Equation (13) is the molecular quantum mechanical analog
|

i j#i

)

r
to the Ehrenfest theorem.'” It is simpler to use the Cartesian
displacements from equilibrium positions, rather than inter-
nal coordinates. This would mean tht the average of the de-
rivatives of the potential energy with respect to all Cartesian
displacements should be zero—(dV /dAz;) = 0, for exam-
ple. We adopt the conventional Cartesian frames such that
the z; axes are taken in the direction of the A-X; bond at
their equilibrium position and the x; axes are taken on the
plane X;,-A-X; and perpendicular to z;. A denotes the cen-
tral atom. Now we can express the internal displacment co-
ordinates in terms of the Cartesian displacement coordinates

Ar; = Az, + [(Ax,) + (Ay, ) /27, + -, (15a)
Ax; Ax; Ax, Az, Ax, Az,
da;; = d Lo T T 4., (15b
= - (150)
7. Si .
Ag;; = 5,4z, + 5,4z, + Ui/l day; + . (15¢)

4qi;
Using Eq. (15) we can calculate the derivatives of the internal
coordinates with respect to Az, , as

d4r,/dAz, =6, + -, (16a)
, da, ; da;

dda,;  Aa, 5, = — _a'_"_(sjk, (16b)

dAz, 2r, 2r,

Jd4q,;

azkj =skj6ik =Sik6jk3 (16¢)

where §; is the Kronecker delta. Using the above equations
we obtain

(¥ /94z,) = 0= [Kk + Z [[ijF;(j +siijj)]<Ark> + Z [1e;8ixtiF 4 + LaSetiFey 1 (day ;)

jFk J

+ 2 [ =t F iy 451580 Fi 1440 — 1 S [Hegry — 5,5 F &y + Lt Fi 1 (dey )?)

JZk

JEk

-1 [tkjsjk(rj/rk &+ usij(r/r)F (ArkAakj) -1 z [4x8e,Fj + te;SiEi 1 (Arday )
j#k

7k

—3a, K, <(Ark)2> +4 z (l/qkj)skjFij <(Aij)2>- (17)

JZk

Through Eq. (7) we can express the mean square amplitude (MSA) of the displacement of nonbonded distances {(4¢;)*) in
terms of the MSA of stretching and bonding displacements {(4r;)*) and {(4a;)?) and cross products between them:

((AQ.',')2> = S;((Ari)2> +sj}((A’})2> + ("12’}2 sin® aij/q?j)«Aaij)z) + Zsijsji(AriArj)
+ 2s;;(r.r; sina;;/q,,){Ar,4a;;) + 2s;,(ri7; sina;;/q,,)(Ar,da;;) + . (18)

In Eq. (18) we neglect all terms higher then quadratic. Substituting Eq. (18) into Eq. (17) we obtain the final equations, which

connect the mean displacements with the MSA:
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[Kk + > (tF +Siijj)]<Ark> + Y [ =t F iy +sisicFi 1€Ar) + 3 (68 F iy + s Frg 1 {4ay )
J#k ’ ’

J#k ik

[zakKk -1 (l/qkj)ijskj:l<(Ar2)> —4 Z (I/ij)F Sk j Jk(Ar) ) +1 z [ij" Skjsjker/,\'/
J#k

J#k

+ bty — (l/qfk)skj”i"f sin akjFij]«Aakj)z) +3 z (26,8 r /1 )F & + a8 /7 ) Fy
J#k

(2/4k1)sfqu" sin ak_/Fk]]<ArkAakj> +4 Z ,kSkJij + I ij
j#k

— 3 (1/gu,)F ks, (Ar,Ary). (19)
Jj#Ek
For a molecular type with vanishing mean bond displacements (4a; ) = 0 we obtain from Eq. (19) a set of m linear coupled
equations for m nonequivalent bonds (m different derivatives with respect to Az, , / = 1,...,m). If the molecular symmetry
demands also m’ nonzero (Aa,j), then we must calculate m’ derivatives with respect to Ax; (i=1,..,m’) as well.

— (2/qi;)s0;8;. 71y sin @, | {Ar,Aa;, )

APPLICATION TO A PLANAR YAZ, MOLECULE: O = CF,

In this section we apply the above model to the special case of planar YAZ, molecules (C,, symmetry). For this type of
molecule we have to consider two different mean bond displacements, namely (47, ) and (4R ., ). The sum of the in-plane
bond angle displacements is zero. We will assume that the mean in-plane bond angle displacements in near-trigonal planar
molecules also nearly sum to zero. The UB field would also need an out-of-plane bend which is not included here. Bartell
indicates that this deficiency is partly compensated for by correctly calculated values of the mean square amplitudes. ' Using

Eq. (17) we can obtain the following set of two linear coupled equations for the effect of anharmonic vibrations:

(Kr +251Fy + t3F) + 5F,)(AR ) + (— 6,5:F , + 5,5,
= Jar Kz (AR ) — (1/2Q )5, F 5{(4Q))

— (172g)5,F 5 ((4q)*) + §(Hp — STF 5 + 1 1Fp)R (4B ) + Y H,
+ (1,5 F § + 1,5, Fp)(ARAB ) + N1,5:F ;) + 1:35,F, )(r/R ){ARAa) + |(t:5,F ; + 1,5:F,)(Arda)

and

2 — Lt:F ) +5,5F, (AR ) + (K, + 2t3F ; + 251F, )(4r)

F,){4r)

— 5,5F ) + 1,1:F, )r{(4a)’)
(20a)

=34, K {(4r7) — (1/@)s:F ;{(Aq) + (Hy — 525:F ; + 1::F, R ((4a)?)

+ (18:5F ) + 135,F, ){ARAa) + (t:5,F ; + 1,5,F,)(R /r){4rda),

where r denotes the A-Y bond, R the A-Z bond, a is the Y~
A-Zbond angle, and B the Z-A-Z bond angle. ¢ means the
distance between the nonbonded atoms Y and Z and Q the
distance between Z, and Z,. The geometric parameters are
the following:

=(R—RcosfB)/Q, t,=Rcosf/Q,
s, =(R —rcos a)/q, t, =rcosa/q, (21)

sy=(r—Rcosa)/q, t;=Rcosa/q.

We also could express the MSA of the nonbonded distances
((4¢)*) and {(4Q)?) in terms of the MSA of the internal
coordinates by Eq. (18). In this way we would obtain a set of
equations for (4r) and (AR ) analogous to Eq. (19}, but with
the disadvantage that these equations would not show the
importance of the different UB-force constants so clearly.
On the other hand, for purely numerical calculations, we
would prefer to apply Eq. (19) instead of Eq. (17) because the
MSA of the internal coordinates can be obtained easily.

These MSA’s (which include nonvanishing crosspro-
ducts) are related to the mean square normal coordinates
(Q?) in the usual way'®

(R,R,)) = U'L(Q*LTU, (22)

(20b)

where (Q?) is a quadratic matrix with the diagonal ele-
ments:

(Q%),; = (h/Amca,)v; + ). (23a)

The thermal average of (v; + }) taken with the harmonic os-
cillator partition function is (})coth(hcw,/2kT ), giving

(@), = (h /41 cw;)coth(hcw,; /2kT). (23b)

The nondiagonal elements are zero. The transformation ma-
trix L from normal coordinates to symmetry coordinates can
be obtained by the usual GF-matrix method'® and U is the
transformation matrix from symmetry to internal coordi-
nates. For the remaining UB-force constants we used the
following assumptions:

(i) F' = — 0.1 F, as suggested by Shimanouchi;

(ii) the Morse parameter for the C—=—0 and the C-F
bond stretches can be obtained by invoking V' =(R,)
= 45%c*w, = 2a°D, . This holds strictly only for a diatomic
molecule, but we can apply it to O—CF, using bond disso-
ciation energies for the different bonds®' and the fundamen-
tal frequencies which are primarily stretches. We obtained

a,=3.663A"" and ag =2.467A"'
for the CO and the CF bonds, respectively;
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(iii) for the potential energy between nonbonded atoms,
several empirical functions have been proposed. For flu-
orine—fluorine interaction, e.g., it is reasonable to assume a
Lennard-Jones-type function.?? Then it follows that

F;=gq. [[&Vg/og].,
where
Vig)=¢€[lg./9)"* — 2(q./9)°].

We applied Eq. (20) to various isotopes of carbonyl flu-
oride O = CF,. For this molecule nearly all the necessary
information (harmonic vibration frequencies for all isotopes,
some UB-force constants) are published by Mallinson,
McKean, Holloway, and Oxton.?’ The following values
were used for the equilibrium structure: 7o = 1.1726 A,
Rer = 1.3144 A, @ = 126,03, and B = 107.94 A.%* Using
these parameters in Egs. (20) and {21) we obtain mean bond
displacements for the C—0 and the C-F bonds, presented in
Table I for the case of '°O '*CF,,.

In addition to the effect of anharmonic vibrations, we
also have to include the change in bond length due to rota-
tion. This centrifugal distortion is usually one order of mag-
nitude smaller than the effect due to anharmonic vibrations.
On the other hand the centrifugal distortion is proportional
to temperature. If we are interested in the temperature de-
pendence of the mean bond displacement this effect cannot
be neglected. The centrifugal distortion is calculated by as-
suming that the rotational level spacings are small compared
to kT so that the equipartition law can be used. One form in
which this term can be written is®

(R e = kKTUTF 'G5 'UBQX, (24)

where Fg and G are Wilson’s F and G matrices in terms of
symmetry coordinates and B is the usual transformation ma-
trix between Cartesian displacement coordinates and inter-
nal coordinate R, and X are the equilibrium Cartesian posi-
tions of the atoms

N=Ig) '+ I,)7", a=xyz (25)

The centrifugal distortion contributions to the mean bond
displacements are shown in Table I. The temperature depen-
dence of the total mean bond displacement (sum of vibra-

TABLE I. Mean bond displacement due to anharmonic vibration using Eq.
(20) and due to rotation using Eq. (24} for '*0'2CF,. (All numbers in 10~°
A)

{4reod™ (4R )T

T(K) vib rot tot vib rot tot

250 6.7909 0.2501 7.0410 55208 0.5061  6.0269
260 6.7942 0.2601 7.0543 5.5324 0.5264  6.0588
270 6.7978 0.2701 7.0679  5.5453 0.5466  6.0919
280 6.8016 0.2801 7.0818 5.5594 0.5668 6.1263
290 6.8058 0.2901 7.0959 5.5748 0.5871 6.1619
300 6.8101 03001 7.1102 55915 0.6073  6.1989
310 6.8148 03101 7.1249 56095 0.6276 6.2371
320 6.8197 03201 7.1398  5.6288 0.6478  6.2767
330 6.8249  0.3301 7.1551 5.6494 0.6681 6.3175
340 6.8305 0.3401 7.1706 5.6713 0.6883  6.3596
350 6.8363  0.3501 7.1864 5.6945 0.7086  6.4030

4919

tional and rotational parts) and four different isotopes of
carbonyl fluoride is illustrated in Fig. 1.

CORRELATION OF NMR EXPERIMENTAL DATA

The temperature dependence of the '°F nuclear mag-
netic shielding for an isolated 'O '*CF, molecule (at the
zero-pressure limit) was reported earlier.”* It was found that
for T = 230-380 K, the observed temperature dependence
can be described by

0o(T) — 04300 K) = — 4.332X 10~3(T — 300)
— 1.3465 % 10~5(T — 30002

+ 1.623 X 10~%T — 300p.

These experimental results can be fitted to the function
A + B (AR (T)), where A~0, — 0,(300) and B = (do/
JAR i). - Since the nuclear shielding is a very localized elec-
tronic property, we can neglect the effect on g, due to the
change in the C—0 bond length, i.e., we neglect {doF /
ddrco), relative to (90" /A /R ). + (007 /OAR ).
From this fitting we obtained

o, — 04300)=7.1 + 0.1 ppm
and
(00/3AR cg), = — 1146 + 15 ppm/A,

where the standard deviations quoted are entirely from the
numerical fitting to within experimental errors and do not
reflect the accuracy of these numbers. We further interpret
this derivative entirely in terms of (Jo¥' /dAR cg,)., i.e., We

i __1o'2cF,
_<Arc:f)2///”/ ©otscr,
ooorol //,»”’//'SO‘ZCFZ i
B - 180|3CF2 N

@n .
A | ]

i -
0.0065 |- .

0.0060

I S N U

L1 ¢ )

L
250 300 350

Temperature, K
FIG. 1. Mean bond displacements in various isotopomers of O—CF,.
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neglect the effect of the other CF bond stretch.

The BF; molecule (D ;, symmetry) is isoelectronic with
OCF,. The vibrational frequencies of BF; are comparable to
OCF, and the empirical derivative of '°F shielding which
fitted the experimental T dependence in BF; at the zero-
pressure limit> was (do/dArge), = — 1115 ppm/A. It is
somewhat surprising that the derivatives are quite similar.
This again confirms the localized nature of the nuclear
shielding.

Ditchfield*® has shown that for diatomic molecules the
difference between o,,(T') values calculated at two different
temperatures shows very little change when the term in
(3%0/94r%), was dropped since the quadratic and higher
terms contribute so minimally to the T dependence of o(T').
However, even when the first derivative (do/dArcg ). may be
sufficient to interpret the temperature dependence, the total
dynamic effect at 300 K, the difference between o,(300) and
the shielding in a hypothetical rigid equilibrium configura-
tion ¢, is due to all the terms. That is, even when the anhar-
monic and centrifugal distortion dominate do,/dT, the har-
monic terms may not be negligible in determining the
absolute magnitude of ¢, itself. This error exists in the quan-
tity o, — 04(300)~7 ppm. Nevertheless, we estimate
0. ~229 ppm by using the absolute shielding value of o,(300
K) = 221.6 ppm,*® which we had previously obtained with
good precision relative to g,(300 K) for SiF, and the latter
was measured with good precision relative to 0,(300 K) for
HF by Hindermann and Cornwell.”” The absolute shielding
of HF itself may have larger errors associated with it.

Another interesting application of our calculations is
the investigation of NMR isotope shifts. We measured the
3C/"*C-induced '°F isotope shift in the gas phase:
[04('°0 "*CF,) — 0,('°0 "*CF,)] = — 0.117 +0.003 ppm.
This result agrees with the older published shift of
— 0.121 4 0.003 ppm®® in the liquid phase. The derivative
(Jo/34R ), is a purely electronic quantity independent of
mass to the extent that the Born—-Oppenheimer approxima-
tion is valid. If we include only anharmonic and centrifugal
distortion terms we can calculate an isotope shift as follows:

0,{1%0 '°CF,} — 0,('°0 ’CF,)
= (Jo/AR k).
X [{4R c¢('°0 PCF,)) — (4R ¢ ('°0 VCF,)) ]
= — 0.096 ppm. (26)

This calculated isotope shift is temperature independent
since we found both isotopic species have essentially the
same temperature dependence for (AR ). The above
equation is only an approximation since the other terms such
as (Jdo/dArco ). {(AFco)) + - have not been included. Nev-
ertheless, the agreement with our measured isotope shift is
quite good. In fact we can estimate (Jdo/dArcc ). from the
experimental isotope shift if we assume that we can calculate
the isotope shift with Eq. (26) plus the additional term

(B0/34rco). [{Arco{'°0 *CF,)) — (Areo("°0 PCF,)) 1.

This leads to (30/34rce), ~ — 175 ppm/A.
Although we can use the same formula [Eq. (26)] tc
calculate two-bond isotope effects from the (AR ¢ ) for var-

ious isotopomers, the results would be very approximate.
For example, using only the (30" /AR ), (4R 1 ) term to

calculate  isotope  shifts, we get o,{'°0O '*CF,)
— 04" °CF,) = — 0.033 and 040 PCF,)
— 0,('"*0 CF,) = — 0.034. It can be seen in Fig. | that the

[{Arcmy ) — {Arc e )] difference is much larger than the
differences between (4R ) for the '"*/!°O species, thus we
should include the (do* /dArcq), (Arce ) term in calculat-
ing the two-bond isotope effects on '’F. Using the additional
term with the estimated (30/34rco ), ~ — 175 ppm/A, we
obtain a,('°0 "*CF,) — o,('*0 '°CF,) = — 0.067 ppm and
ay('°0 PCF,) — 0,("*0 "*CF,) = — 0.070 ppm. This parti-
cular two-bond isotope effect has not been measured. How-
ever, the sign of two-bond isotope shifts is usually the same
as for one-bond isotope shifts and the magnitude is about
right. We may be able to obtain a better estimate of {do* /
JdArce). from an experimental value of the '*/'°O-induced
'*F isotope shift.

There is another possibly important source of error in
our calculations. In the theory given here, the temperature
dependence appears in the form of the thermal averages of
(v; +1). Although anharmonicity is included explicitly in
parameters g and F >, the thermal average of (v, + 1) is taken
with a harmonic oscillator partition function. Fowler and
Raynes® have pointed out the magnitudes of the errors in-
troduced by this simplifying assumption. However, it should
be noted that despite such an assumption, Bartell finds that
the thermal expansion observed in electron diffraction of
very hot molecules (up to 1500-2000 K} is adequately de-
scribed by this model.***' This is reassuring since the high
temperature limit provides a worst case example of the use of
the harmonic oscillator partition function.

In summary, we have given a general expression [Eq.
(19)] for the set of coupled equations which have to be solved
to get mean bond displacements {(4r, ) in terms of mean
square vibrational amplitudes {(4r;4r, ) etc., for a molecule
with one central atom, several nonequivalent bonds, and a
vanishing sum of mean bond angle displacements. We have
applied it to the specific case of a planar YAZ, molecule. The
temperature dependencies of the mean bond displacements
are calculated for the various isotopomers of O—CF,. The
shape of (AR )" is the same as that of the observed
oo(T) — 0,300 K) in the range 230-380 K. Fitted to
(AR )7, the experimental '°F shielding dependence gives
an empirical value of the derivative (do/dAR ), - This deri-
vative allows us to calculate a '*/'?C-induced "°F isotope
shift which should probably be on the low side due to ne-
glected terms. Nevertheless, agreement with experiment is
good.

ACKNOWLEDGMENT

This research was supported in part by the National
Science Foundation (Grant CHE81-16193).

'A. D. Buckingham, J. Chem. Phys. 36, 3096 (1962).

C. J. Jameson, J. Chem. Phys. 66, 4977 (1977); 67, 2814 (1977).

*G. Riley, W. T. Raynes, and P. W. Fowler, Mol. Phys. 38, 877 (1979).
*A. D. Buckingham and W. Urland, Chem. Rev. 75, 113 (1975).

5C. J. Jameson, J. Chem. Phys. 66, 4983 (1977).

J. Chem. Phys., Vol. 81, No. 11, 1 December 1984



C. J. Jameson and H. -J. Osten: Bond displacements and '*F magnetic shielding 4921

5C. J. Jameson, Bull. Magn. Reson. 3, 3 (1980) and references cited therein.

"I. Suzuki, Appl. Spectrosc. Rev. 9, 249 (1975).

8H.-J. Osten and C. J. Jameson, J. Chem. Phys. 81, 2556 (1984).

M. Toyama, T. Oka, and Y. Morino, J. Mol. Spectrosc. 13, 193 (1964).

101 S. Bartell, J. Chem. Phys. 70, 4581 (1979) and references cited therein.

111, S.Bartell, J. Chem. Phys. 38, 1827 (1963).

12T, Shimanouchi, Pure Appl. Chem. 7, 131 {1963).

3H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).

4T. Shimanouchi, J. Chem. Phys. 17, 245 (1949).

15K. Kuchitsu and L. S. Bartell, J. Chem. Phys. 36, 2460 (1962).

15P, M. Morse, Phys. Rev. 34, 57 (1929).

1P, Ehrenfest, Z. Phys. (Leipzig) 45, 455 (1927).

188, Cyvin, Molecular Vibration and Mean Square Amplitudes (Elsevier,
Amsterdam, 1968).

E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations
(McGraw-Hill, New York, 1955).

2%P. D. Mallinson, D. C. McKean, J. H. Holloway, and I. A. Oxton, Spec-
trochim. Acta Part A 31, 143 (1975).

21V, I. Vedeneyev, L. V. Gurvich, V. N. Kondratyev, V. A. Medvedev, and
E. L. Frankevich, Bond Energies, Ionization Potentials and Electron Affin-
ities (St. Martin, New York, 1966), p. 85.

#T. Shimanouchi, I. Nakagawa, J. Hiraishi, and M. Ishii, . Mol. Spectrosc.
19, 78 (1966).

2J. H. Carpenter, J. Mol. Spectrosc. 50, 182 (1974).

?C. J. Jameson, A. K. Jameson, and S. Wille, J. Chem. Phys. 74, 1613
(1981).

R. Ditchfield, Chem. Phys. 63, 185 (1981).

?%C. 1. Jameson, A. K. Jameson, and P. M. Burrell, J. Chem. Phys. 73, 6013
(1980).

’D. K. Hindermann and C. D. Cornwell, J. Chem. Phys. 48, 4148 (1968).

**8. G. Frankiss, J. Phys. Chem. 67, 752 (1963).

*P. W. Fowler and W. T. Raynes, Mol. Phys. 45, 667 (1982).

*L. S. Bartell, S. K. Doun, and S. R. Goates, J. Chem. Phys. 70, 4585
(1979).

318. R.Goates and L. S. Bartell, J. Chem. Phys. 77, 1866, 1874 (1982).

J. Chem. Phys., Vol. 81, No. 11, 1 December 1984



