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The spin relaxation of quadrupolar nuclei in highly symmetric electronic
environments via vibrationally-induced electric field gradients is considered.
A model is presented for tetrahedral molecules which vields a nuclear quad-
rupole coupling constant for '*°Os in an excited vibrational state of OsO,
which is in reasonable agreement with experimentally observed values. The
nuclear quadrupole coupling constants for the central nucleus in excited E
and F7; vibrational states of GeCl,, GeBr,, RuO,, OsQ, molecules as well as
the MOJ™ ions (M =V, Cr, Mn, Mo, Tc, Re) are calculated using this
model. These coupling constants lead to quadrupolar relaxation rates which
are orders of magnitude too small compared to experiment. Alternate mecha-
nisms, collistonal-deformation by long-range van der Waals interactions and
fields induced by octopole moments, are proposed. A binary collision model
is used in which the fluctuating electric fields associated with London disper-
sion forces during a collision create electric field gradients at the quadrupolar
nucleus. Parallel development of vibrational and intermolecular effects on
nuclear shielding with vibrational and collisional-deformation-induced elec-
tric field gradients is shown. The latter mechanism and the octopole-induced
fields are capable of giving relaxation rates of the right order of magnitude.

i. InTrRODUCTION

The nuclear spin relaxation of nuclei with spin >1% is generally attributed to
the interaction of the nuclear electric quadrupole moment with the electric field
gradient at the nuclear site, modulated by molecular collisions which occur at a
rate of the order of 10*?s™! in liquids. For nuclear sites having other than cubic
symmetry, there is an intrinsic (static) electric field gradient tensor whose com-
ponents are given by

Gap = OE,/0xp, (1

where E is the electric field at the nuclear spin due to the electronic environment.
These components are made time-dependent by collisions, both reorientation and
magnitude changes contributing to relaxation [1]. Where a static electric field
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gradient exists this mechanism for nuclear spin relaxation is usually found to
dominate all others, unless the nuclear electric guadrupole moment is very small.

In nuclear sites which have 7', or O, symmetry, there is no static electric field
gradient. However, even in these cases the relaxation time of the nucleus is still
found to be shorter than might be expected if other than the quadrupolar mecha-
nism is responsible for relaxation. For example, the relaxation time of the quadru-
polar *#°0s nucleus in OsOy is 230 us whereas for the spin $'%70s nucleus in
exactly the same environment it is orders of magnitude longer {~35s) [2]. There
are several models which attempt to account for relaxation by the quadrupolar
mechanism in spherically symmetric, tetrahedral, or octahedral nuclear sites
[3-6]. All are based on the creation of an instantaneous electric field gradient
which averages to zero but which has a non-vanishing mean square.

Briefly, the contributions to the instantaneous electric field gradient come
from the following:

(@) Electrostatic contributions which are important for electrolyte solutions
are: (1) the distortion of the noble gas core at the nuclear site due to electrostatic
charges or multipoles in the first coordination sphere; (2) the distortion of the
noble gas core due to electrostatic charges or multipoles in the second coordi-
nation sphere and farther out; and (3) the direct electrostatic contribution to the
electric field gradient at the nuclear site due to all the surrounding charges and
multipoles.

(5) When the point charge multipoles are replaced by electron clouds there are
additional electronic contributions. Collision between a solvent molecule and the
probe molecule leads to a distortion of the electronic distribution at the nuclear
site due to long-range (van der Waals) and short-range (repulsive) interactions.
The same distortion of electronic distribution which leads to a decrease in nuclear
magnetic shielding with increasing gas density leads to electric field gradients at
the nuclear site. There are two effects: One is the general expansion of the
electron cloud of the probe molecule due to attraction to the nuclet of the solvent
molecule. Second is a deviation from spherical symmetry which leads to a para-
magnetic shielding contribution and also an electric field gradient. Deverell [7]
has modelled the short-range part by using a sum of squares of overlap Integrals,
the same type of approach used by Adrian to model the short-range contributions
to 29Xe deshiclding with density in xenon gas [8]. Hertz has also included a
short-range contribution in his model and shown that it leads to the same form as
Deverell’s model in the limiting case [3].

(¢) A vibrational contribution arises when an asymmetric vibration (E or F,
symmetry for a Ty nuclear site, or F, or Iy, symmetry for an O, site) is excited.
The v = 1 state has a non-vanishing electric field gradient. This is considered an
important contribution in the relaxation of '*°Os in OsO,, 29101 Ry in RuO,,
6, 9] as well as 3Ge in GeCl, and GeBr,, [10] and M = 35,37, 7981 By,
50,51y 53Cr, $5Mn, %Mo, **Tc, '®'Re, in MO} ions in D,0 [9]. This
mechanism has even been invoked in relaxation of M ™" jons in agueous solution
by considering the vibrations of the H;O molecules which form a tetrahedral or
octahedral first coordination sphere [4].

All these models (except Brown and Colpa [6]) have adjustable constants
which make it possible to explain the entire relaxation rate by a ‘reasonable’
choice of parameters. Thus, the electrostatic contributions alone have been used
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to explain relaxation rates of "Li*, 23Na™* *°K* 85Rb* 133Cs*, 2TAPPY 09Ga3t,
BC17, ¥ Br7, 1?7117, in dilute aqueous solutions [3], and "Li* and '**Cs* relax-
ation in supercooled aqueous solutions or in viscous liquids such as glycerol
{11, 12}, The short-range repulsive contributions alone have been used to
account for relaxation rates of halide ions in solutions of various alkali halides
[5, 7], and the vibrations of H,O molecules around ions have been used to
account for relaxation rates in aqueous solutions of AI** and Ga®" salts, Na®,
Br~ and I ions, and *YCo in octahedral Co(I11) complexes [4, 13].

These models each have counterparts in the interpretation of solvent effects
and vibrational effects on nuclear shielding. The theoretical approaches used in
accounting for effects on nuclear shielding can be applied to quadrupolar relax-
ation in highly symmetric nuclear environments. It is from this vantage point that
we consider the problem of vibrationally-induced quadrupolar relaxation. We
consider only tight-binding systems such as GeCl,, GeBr,, 0sO,, RuO,,
MOj}™, with emphasis on neutral species, since we are not specifically interested
in the electrostatic effects which are well treated by the theory of Hertz [3].

There are some interesting experimental evidence which have been proposed
as supporting the vibrational mechanism of quadrupolar relaxation.

(a) The relaxation rates of a series of molecules of the type MO}~ in D,O
solution and the neutral RuO, in CCl, solution have been characterized in a nice
set of experiments by Tarasov et al. [9]. This set of molecules is specially suited
for investigation for the following reasons: Because 180 has no spin, the intramol-
ecular dipole—dipole or scalar coupling mechanism for M relaxation is absent.
The central atom has a highly symmetrical electronic environment, so the shield-
ing anisotropy mechanism is probably not important. Only quadrupolar, spin—
rotation, and intermolecular dipole-dipole interaction need to be considered.
Tarasov et al. studied relaxation times and their temperature dependence in pairs
of nuclei 33 37Cl, %51y, #9.101Ry 7981 and ?% °"Mo. The ratios of /7T, for
CI27CLin ClO; and "°Br/®'Br in BrO, are essentially indistinguishable from
the ratios expected on the basis of the nuclear quadrupole moments. The ratio of
Q21 + 3)/(21 — 1)1* is 4.54 for *°1/°'V. Observed relaxation rates in VO, have
ratios around 3-34, which could be within experimental errors in the quadrupole
moments. For MoO3™ the ratios are also close to that which could be expected
using the nuclear guadrupole moments [14]. Especially intriguing is the tem-
perature dependence of the °'Ru/*?Ru ratio of relaxation rates in the system
RuQy in CCly solution, in which there is no possibility for electrostatic contribu-
tions. Tarasov and coworkers’ experiments on the MO}~ systems indicate a
change in the temperature dependence (1/7; curves show minima when plotted
against temperature). The curvature is explained by the authors on the basis of
two competing quadrupolar mechanisms with different T dependences, one with
exp {—hew/kRT) and the other with exp (E,./kT), the vibrational and electrostatic
or collisional deformation mechanisms respectively. The latter are associated with
correlation times exhibiting Arrhenius type behaviour.

(b) T-dependent relaxation studies of all 3 nuclei in Co(CN});~ by Chacko and
Bryant give interesting results [15]. The *°Co relaxation rate in Co(CN)g?3
decreases with an increase in temperature (as expected from Arrhenius-type
behaviour), but the rate of decrease is a factor of 2 smaller than that of **C in the
same molecule. Furthermore, the changes in correlation time upon ion-pair for-
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mation which are deduced from changes in the **C and >N relaxation rates are
not reflected in *°Co relaxation rates upon ion-pair formation. These experiments
provide a challenge to the Hertz model which considers the outer solvation sphere
mainly responsible for relaxation. According to the Hertz model 1/7, can be
affected systematically by placing counterions of high charge outside the first
coordination sphere of the *°Co. However, Chacko and Bryant estimate that this
accounts for only <30 per cent of the change in the electric field gradient at the
Co nucleus. The *?Co relaxation rates are interpreted by invoking an additional
mechanism other than the electrostatic model (such as vibrational) operating in
3¥Co relaxation.

There are unequivocal pieces of evidence for vibrationally-induced electric
field gradients. One is the electric quadrupole coupling which i1s observed as
hyperfine structure in the excited rovibrational states of the totally symmetric
electronic state of '¥°0s0,, for example [16, 17]. Other related evidence is the
variation of intrinsic quadrupole coupling constants with vibrational state for the
halogen nuclei in CH;3*Cl and CH, "*Br [18], the isotope effect on the nuclear
quadrupole coupling constants in H/D/T—C], Br, I molecules [19}, and the
temperature-dependent quadrupole coupling constants observed in gas-phase
nuclear guadrupole resonance spectroscopy [20, 21]. All can be attributed to
vibrational effects on electric field gradients at the nuclear site. The relaxation
evidence provided by Tarasov et al. for *Ge in GeCl, and GeBr,, RuO, in CCl,
and for MO}~ in D,0 solution constitutes the most direct evidence cited for
vibrationally-induced quadrupolar relaxation. In this paper we examine the
nature of this evidence.

In Tarasov’s discussion of the data, only a single vibrational mode is con-
sidered to be responsible and the temperature dependence is attributed to a factor
exp (— hew/kRTY which takes into account the vibrational population of the lowest
frequency fundamental level. A quantitative treatment of vibrationally-induced
electronic field gradients is in order, which includes all efg-active vibrational
modes (E and 2F, in a T, molecule). We devise a straightforward way of deter-
mining first and second derivatives of the efg with respect to displacement coordi-
nates, without having to do a full vibration—electronic coupling calculation for the
molecule. In this paper we deduce (8q,,/3S) and (92,5/0S%) numerically from efg
components generated from point charge displacements, where S is a symmetry
coordinate belonging to E or F, . We have used an anharmonic force field for each
of the MO, neutrals and ions. We verify (numerically} the symmetry relations
between cubic force constants and between derivatives of the efg components. We
obtain reasonably good agreement with experimental **°Os efg values for the
961 cm ™! vibrational excited state in '890sO, with this method. We discover
periodic trends in the reduced intrambolecular quadrupolar relaxation rate due to
vibration of MQ}" type systerns, with M =V, Cr, Mn, Mo, Te¢, Ru, Re, Os. In
addition, we offer an alternate calculation of the vibrationally-induced quadru-
polar relaxation rates and the expected temperature dependence of 1/T by this
mechanism. This is the first time that a quantitative treatment of vibrationally-
induced quadrupolar relaxation rates and the expected temperature dependence
has been presented. Finally, we present a model for collisional-deformation-
induced electric field gradients and examine the temperature dependence and
magnitudes of the rates observed by Tarasov et al. with the aid of these models.
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2. MeTHOD
The interaction of a nuclear quadrupole moment ) with an electric field
gradient at the pesition of the nucleus can be written in terms of vector com-
ponents of the nuclear spin operator I as follows:

W= —(1/6) 3. [eQ/I2I — VILG3/2)U Iy + 15 1) ~ 82 1* g4y, (2)
a f

where a, f run over melecule-fixed axes x, v, 2. The components of the electric
field gradient at the nuclear site for a non-degenerate electronic state can be
expressed as an expansion in terms of the vibrational coordinates Q;

erﬂ = (Qexﬁ)e + Z (aQaB/agi)e Qi + %' Z (GZQaﬁ/aQi an)c Qi Qj o (3)

For the systems which we are considering here, (g,g)., the electric field gradient
at the static or equilibrium configuration is zero.

In order to calculate relaxation rates, we proceed as follows: First we write the
electric field gradient components as an expansion in symmetry internal coordi-
nates

qaﬂ = (Qaﬂ)n + Z (aQaﬂ/aSt)e St + % Z (azqzﬂ/asr aSt)e Sr Sr + ... (4)
t

rf

An approximation is made by assuming a linear transformation between internal
coordinates and cartesian displacement coordinates. The appropriate symmetry

Table 1. Constants used in the calculations: Q are in 1072¥m?, 7, and ain A,

Nucleus I 0 [38] yt Molecule 7, Ref. a
3Ge 9/2 —0-2 10 GeCl, 2-08 [39] 1-44
GeBr, 2297 [39] 1-27
351 3/2 —0-0789 50 Clo; 1435  [40] 289
81py 3/2 0-28 100 BrO, 178 397 121
S0y 6 0-21 10 VO3~ 1-717 {411 152
Sty 7/2 —0-052
3¢y 3/2 0-03 10 CrOf 166 [4217 186
55Mn 5/2 0-55 10 MnO; 1-59 [39]  2-46
%Mo 5/2 012 30 MoOj 1-81 [43]  1-49
b 9/2 03 30 TcO] 1715 [44]  2-14
?°Ru 5/2 0-076 30 RuQ, 1-706  [45] 2:34
101Ruy 5/2 0-44
187Re 5/2 2:6 130 ReO; 1-723  [46] 146
1890 3/2 0-8 130 0s0, 1:712  [47] 1-53

T These values of y are estimates, on the basis of the following values for the closest
closed shell ions [23]: ¥W{Ge) from y(Ga®") = 9-5; W Cl) from y(Cl") = 56:6; y(Br) from
¥(Br7) =123, 100; y(V, Cr, Mn) from p{Mn®**)=11-37, 6:81; y(Mo, T¢, Ru) from
Ag') =349, 22.11; y(Re, Os) from y(Cs*) = 102-5, 110, y(Xe)} = 157 [48], p(I") = 138,
175, %(Yb**) = 79.
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coordinates for the £ and F, vibrations in terms of cartesian displacement coordi-
nates are

Sza = (1/2\/6){—"/_\3{:] “i“ Ayl '+' 2 AZZ + sz - Ayz + 2 AZZ - Ax3
-_ AyS — 2 A2‘3 + Ax4 + Ayti - 2 A2'4},
Sop = (1/2\/2){Ax1 + Ay — Axy — Ay, + Axy — Ays — Axy + AJM},
Sae = (1/2\/3}{Ax; — Ay, + Az, + Ax, — Ay, — Az, + Axy + Ay,
I A2’3 "+’ AX4 + Ay4 + A2'4},
S3y = (1/2\/3){“‘Axl + Ayl - Azl - sz + Ayz ‘+‘ A22 ‘é’ Ax:.!. + Ay3
— Azy + Awg + Ays + Az},
Sa, = (1723 ~Ax; + Ay, — Az + Axy — Ayy — Az + Axsy + Ays 7 (5)
- A2'3 - Ax4 - Ay4 - AZ4},
Sy, = (1/2\/6){2 Ax{ + Ay, — Az, + 2 Ax, + Ay, + Az, + 2 Axy
— Ayy + Azy + 2 Axy — Ay, — Az},
S4y = (1/2-\/6){Ax1 -+ 2 Ayl + Azl +Ax2 -+ 2 Ayz - AZZ e Ax::,
+ 2 Ays + Azg — Ay + 2 Ay, — Az},
Sy, = (1/2\/6){—Ax1 + Ay + 2 Az + Axy — Ay, + 2 Az, + Axy
+ Ays + 2 Azy — Awy — Ayy + 2 Az,
As a first order approximation we assume a point charge model where the point
charges are located at the position of the oxygen nuclei. Ab initio calculations
vield net atomic charges equal to —0:67 and —0-57 for O and +0:67 and +1-29
for the central atom in CrQ3~ and MnO, ions respectively [21]. Other values for
atomic charge of O in MnO, are —0-36 by CNDO/VESCF with CI and -0:41
by a scattered wave calculation [22]. Calculated atomic charges on the oxygen
atom in various other MO}™ ions are comparable. Although there may be period-
ic trends in the atomic charges in MO, we use —0-5 for all since systematic
calculations on all MO}" ions using the same method are not available. If we
displace these charges according to the definition of the symmetry coordinates in
equation (5) and fit the calculated components of the electric field gradient to a
functional form given in equation (4) we can obtain the required first and second
derivatives of the efg. These derivatives have to be multiplied by (1 + y), taking
into account the electric field gradient which arises due to the polarization of the
closed inner shells of the central atom due to the displaced charges, where ¥y is the
Sternheimer antishielding parameter [23]. The values of y and other constants
used here are given in table 1. _
We find that many of these derivatives vanish, and the ones that are non-zero
are related to one another as follows:

(aQ/aSZ) = (GQZZ/GSZ(I) = mz(GQxx/aS?.a) = mz(Gny/aSZa)
= (2/\/3)(GQxx/682b) = (2/\/3)(6ny/@821‘)): (())
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(aQ/aSIi) = (GQyz/aS.%x) = (aQZx/aSBy) = (any/aSle)s (7)
(0g/084) = (0qy,/084x) = (8q,,/0S4y) = (0] 0S4,)- (8)

Non-vanishing second derivatives are

(82q/8S2) = (0%q,,/082,) = — 202 /0S3) = —287q,,/353,)
= —(0%4,,/08%) = 2079, /05%) = 2Pq,,/3*SE)
= IO 4rf 0S50 0S2) = (2 3N0700y/ 3850 8S3p).  (9)
(0%/0S2)p = (074,,/05%,) = (0%4,,/053%,) = (9%4.,/0S3,)
= —2(0%,,/0S%,) = —2(9%q,,/353,)
202,085 = — 2074, /0S3.)
= —2(8%,,/05%,) = —2(0%4,./053,) (10)

and similarly for S, (that is, replace all S; in equation (10) by §, to get the
relationships involving S,)
(aZQ/asg)F = (aZQyz/aSSy 6S32) = (aqux/a‘S3z aSSx)
= (62qu/as3x 683);) (11)
and similarly for S, . These relationships which we found numerically are exactly
as derived by Hougen and Oka [17]. Table 2 includes several first derivatives of
the electric field gradient calculated in this manner.

The next step is the transformation of these derivatives into derivatives with
respect to normal coordinates, making use of the relation

(GQaﬂ/aQi) = 2 (BQaﬂ/aSr)(aSt/aQt)) (1 2)

Table 2. Derivatives of the electric field gradient with respect to symmetry coordinates as
defined in equations (6)-(8), in esu A%

Molecule (0q/08,) (8g/0.S3) (8q/05,)

GeCl, —6-18 ~6°59 ~3-09
GeBr, —416 443 —2-08
Clo; ~33:95  ~3618  —16:97
BrO; 2840  —3026  —1420
Ao 357 —~3-81 —~1-78
CrO; 409 —4:36 —2-04
MnO, - 4-86 —5-18 —2:43
MoO; 815 —8-69 —4-08
TeO, ~10-11 — 1078 —5-06
RuO, ~10-33 —1101 516
ReO; ~51-56  —5495 2578

0s0, —57-82 ~—61-64 --28-91
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where (8.5,/0();) are the elements of the usual L matrix. This transformation
assumes a rectilinear relation between internal and normal coordinates. The
second derivatives transform in an analogous way.

In order to make use of equation (12) we have to perform a normal coordinate
analysis for all molecules of interest. Fortunately Ferraro and coworkers investi-
gated a series of tetrahedral molecules including the molecules and ions of interest
here with a Urey-Bradley force field [24]. We will use their set of quadratic force
constants exclusively. The cubic force constants which are required in the calcu-
lation of the vibrationally-induced nuclear quadrupole coupling constants were
obtained in the following way. For the bond stretching anharmonicity we
assumed a Morse potential where the parameter a was calculated using Hersch-
bach and Laurie’s exponential functions [25]. In addition we assumed an anhar-
monic term for the non-bonded interaction with a cubic force constant Fy =
—10F, where F'is the quadratic force constant for non-bonded interactions in the
usual Urey-Bradley potential, given by Ferraro et al. [24]. With these two
parameters we can express the cubic force constants in internal coordinates f,,, by
considering the appropriate geometry of the tetrahedral molecules. Using the
following standard transformation we obtain the cubic force constants in normal
coordinates, ¢;; from f,,

¢uk = z er Jstr frst . (13)

K, S, 0

These cubic force constants are found to have the relationships derived by
Hougen and Oka for tetrahedral molecules (their equation (36)) [17].

Using these quantities from equations (6)—(13) we obtain the nuclear quadru-
pole coupling constants for the v = 1 state, the quantities y, and y,, given by
Hougen and Oka as

1= (- 1/2)(h*/hv)eQ(0%q/0Q3) — (§222/42)(0g/3Q,) (14)
for the w, (&) vibration, and

1 = (2/5)(h%/hv)eQ

x {(@%q/00%)p + 3(0¢/0QN) g — (D A)(04/0Q))

= (Drerf 1) 0/ 0Q,) — F(P 2l 22)(09/3Q 1)}, (15)
2 = (2302 [hv)eQ

x {(@*q/00%)p — (3/4)(0%¢/00F)g — (duuf A)(8g/0Q,)

~ AP/ AW Oq/0Qp) + (3/4ND2ufA2)(89/0Q7)} (16)

for the two I, vibrations w;(t = 3, ¢ = 4) and w,(t = 4, ' = 3), where 4, = 4n’cw?
and (0g/00Q,), (8g/8Q,), (87q/0Q) and (0%¢/8Q?); are taken from equations (6)-
(10).

3. ResuLTts

Using our model, we calculate numerical values for these nuclear quadrupole
coupling constants in the molecules shown in table 3 for the state v; = 1. For the
w; mode in '*°0s0, these are, ¥ = —3-8 MHz and 3 = —3-0 MHz. These
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quantities have been measured in the hyperfine pattern of the w; fundamental of
the OsQ, molecule using laser saturation spectroscopy [16]. The experimental
values are ¥y = —314 + 0-23MHz and ¥ = -4-29 £ 0-17MHz {17]. The
agreement is good if we consider the simplicity of several assumptions, such as
the point charge model and the Urey—Bradley force field, and especially the
uncertainty in the value of y. Table 3 includes nuclear quadrupole coupling con-
stants calculated in the same way for GeCl,, GeBr,, Ru0O, and for the MO,"
ions, with the same expected accuracy as in OsQ, . Having been able to reproduce
the magnitudes of the 1¥?0s0, coupling constants to better than a factor of 2, we
expect to be able to calculate vibrationally-induced quadrupolar relaxation rates
to at least the order of magnitude with this method.

Table 3. Estimated guadrupole coupling constants y (in MHz) and relaxation time (in
seconds) due to the vibrationally induced electric field gradients at 300 KK.

Nucleus Molecule x? ¥ e past paad T,
3Ge GeCl, —0-004 0028 0:004 0-020 0-003 56 x 10*
Ge GeBr, —0-002 0-017 . 0-001 0-012 0001 93 x 10*
35CI Clo; —0-10 —0-60 0-01 0-50 0-02 1-6 x 103
81By BrO; 0-24 -~ {90 -0-21 —-0-76 —0-18 1-4 x 10%
30y VO3~ 0-04 ~(-35 -0-08 —0-26 —0-05 59 x 10*
sty vVOi- —-0:01 0-08 0-03 0-06 0-02 1-4 x 10°
BCr CrO; G:01 —0-04 —(-01 —0-03 —0-01 1-3 x 10°
S Mn MnOg 011 — 068 —(-09 —0-57 —06-08 1-9 x 10°
*5Mo MoO; 0-07 —0-31 —-0-12 —0:23 -(-08 32 x 10°
0T, TeOy 0-15 —0-71 —0-18 —0-58 (14 45 x 10°
PRu RuO, 0-03 —0-16 —0-03 ~0:14 - (03 2:5 x 10*
10tRy RuO, 18 —0-92 —0-18 —-0-79 —015 74 x 107
*87Re ReOJ 5-48 —18:77 e T 42 -13.97 —5-42 0-58
1890 0s0, 1-14 —375 -1:23 —2-99 —0-96 34

In our calculation of the vibrationally-induced quadrupolar relaxation we
follow the model developed by Brown and Colpa [6], based on the nuclear quad-
rupole interaction constants of the v; = 1 state. In this model the quadrupolar
interaction of equation (2) is a random function of time due to excitation and
de-excitation of the v = 1 states due to vibrationally inelastic collisions, the vibra-
tional dephasing which occurs because of elastic collisions, and the rotational
motion of the molecule in the liquid. The over-all correlation time 7, is assumed
to be dominated by the dephasing and rotational processes.

The total relaxation rate can be expressed as

Ry =1/T, = R(E) + R,(F;) + R(F3), (17)

where the individual contributions from the E and two Ff, vibrational modes are
expressed as

R{(E) = (9/160)(xi)[(21 + 3)/(21 — DI*] exp (—hew(E)/RT)z, (18)
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and

R (F3) = (3/800)[(21 + 3)/(21 — DIPI10(x, — 20 + 9 + (2/3)x0%]
x exp (—heaw(Fy)/kTt,.  (19)

There are several models for estimating the correlation times 7, {26]. In this
paper we do not attempt to reproduce the observed magnitudes of relaxation
times since we are interested primarily in sorting out which mechanisms are
important and which are not. For this purpose we assume the same correlation
time for all of the systems considered here. If we assume a usual correlation time
for vibrational relaxation in liquids equal to 2-5 x 107 !'*s then we obtain from
equation (17) the vibrationally-induced quadrupolar relaxation time of the *®*0g
nucleus in 0sO, at 300K equal to T, = 3-4s. An experimental value was esti-
mated from linewidths as 7| =23 x 107%s [2]. Analogously we obtain
vibrationally-induced Ru relaxation times in °’RuQ, and *°'RuO, equal to
2:5 x 10%s and 740s, respectively, whereas the experimental values [97] are 0-98 s
and 0-033 5. Further results are shown in table 3.

In the following we present a second approach for the calculation of the
vibrationally induced quadrupolar relaxation which can be more easily extended
to other molecular types. We write the potential in terms of the symmetry coordi-
nates as

The symmetry coordinates form a complete orthonormal set if we include a
redundance coordinate. Again the efg is expanded in a Taylor series (equation (4))
in terms of the symmetry coordinates. Having found that second derivatives make
a minor contribution to the overall rate we truncate the expansion after the linear
term:

Qup = (Quple + Z (0Gup/OS)S; + .. ..

All first derivatives are calculated in the same way as described above using the
point charge model. In order to calculate the mean values for the symmetry
coordinates we make use of Ehrenfest’ theorem. The average force is Zero,
(oV/a8;) = 0, so by calculating the derivative of ¥ with respect to all symmetry
coordinates, we obtain a set of linear equations

Z Fik<Si> = "‘(1/3) Z Fijk<SiSj>- (21)

The mean square amplitudes can be evaluated in the usual way .
(818 = (LLOPHLY,, (22)

where {Q?>,; = (1/w;) coth (hew/2kT), taking the thermal average over all vibra-
tional states using a harmonic approximation. The ¢ tensor obtained from equa-
tion (4) then has to be transformed into the laboratory fixed frame and averaged
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over all orientations. This average is then inserted into the usual expression for
quadrupolar relaxation rate

3(2f + 3
QLA omeiady. (23)

1T, = et
/T 40021 — I

Both methods yield nearly identical results for OsO, . The error associated with
leaving out the quadratic terms in equation (4) is small and partially compensated
by the error connected with the assumption of a linear relation between Q and S
in the first method. ‘

If we define a reduced relaxation rate, which is 1/7', divided by the nuclear
properties Q%21 + 3)/(2I — 1)I?, then the vibrationally-induced relaxation rates
in these molecules can be compared directly. We find a systematic trend of
decrease across each row of the transition metal series. This is consistent with the
usual observations of correlations across a transition series rather than a column
in the period table, and is due to the systematic changes in the intramolecular
potential across a transition series, which is reflected in systematic changes in
each of the Urey-Bradley force constants (e.g. Increasing stretching force
constants) and decreasing M~ bond length across each series.

4, DISCUSSION

With our model we can almost reproduce ¥ and 3 observed for *°0s0, in
the 961 ecm ™' fundamental level in the gas phase. This probably means that we
are getting the correct order of magnitudes for efg derivatives with this calcu-
lation method, at least for OsO,. There is no reason to believe that this is an
isolated case. Using the experimental values of quadrupole coupling constants for
the wy v = 1 state for OsO, Brown and Colpa concluded that the relaxation rate
due to this vibration was too small to account for the observed rate, and suggested
that the other two modes with lower frequencies (333 and 323cm™?) are the
dominant modes in quadrupolar relaxation. We find that including all the modes
still gives a relaxation rate that is orders of magnitude too small. This is true also
for all the other systems studied here.

We have found that the vibrational mechanism is unimportant in these
systems. What mechanisms can account for the magnitudes of relaxation rates
observed and their temperature dependence? In those cases where the ratio of
Q*(21 + 3)/(21 — 1)I?* is the same as the ratio of the relaxation rates, the relaxation
is very likely dominated by the quadrupole mechanism, for example, for Cl and
Br nuclei in ClO4 and BrOy .

In the experimental results of Tarasov et al. some of the relaxation rates
showed a change in temperature dependence from an Arrhenius type at low
temperatures to what they considered an exp (—hcw/kT) dependence at higher
temperatures. They attributed these changes to competing vibrational and some
other quadrupolar mechanism. Indeed, the turning around of the curves indicates
at least two mechanisms are operative, with opposite temperature behaviour. The
mechanism with opposite T dependence to Arrhenius type has to be competitive
in at least some cases—since turn-around is observed. The best way to determine
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which are these (at least) two mechanisms is to examine the temperature depen-
dence of the 1/T, ratio for '°'RuQ,/*Ru0, . This ratio is found to vary mono-
tonically from 36'8 at 260K down to 199 at 340K. The ratio of
Q*(21 + 3)(21 — 1)I? values is 33-4. Therefore, it is obvious that of the two com-
peting mechanisms at least one is not quadruplar in nature. Let us make the
plausible assumption that one of the two mechanisms is a quadrupolar one. For
both isotopes 1/T, decreases with increasing temperature, reaches a minimum
and starts to increase with 7T at higher temperatures. Since the 1/7T,ratio
decreases from the purely quadrupolar one to about 2/3 of it at the high T end, it
can be deduced that the guadrupolar relaxation rate decreases with increasing T
while the other rate increases with increasing 7. We have already shown that the
vibrational mechanism has a T dependence given by equations (18)-(19) which
have the form 1/T, = a; exp (—hew,/kT). Therefore, the quadrupolar mecha-

nism which dominates is not the vibrational one. Not only are the vibrationally-
induced relaxation rates too small, they also have a temperature dependence
‘inconsistent with the observed temperature dependence of the 1/7°, ratio for
101Ru0,/2Ru0, . Since RuQ, in CCl, does not involve any ionic charges, we
suggest that the quadrupolar mechanism which may be dominant in this system is
the collisional-deformation mechanism; dispersion and repulsive forces give rise
to fluctuating electric field gradients produced by instantaneous cloud deforma-
tions on collision. This mechanism should be more effective at lower tem-
peratures, as discussed below. This mechanism then has the right temperature
behaviour. The competing non-quadrupolar mechanism whose rate increases
with increasing temperature could be the spin-rotation mechanism, which is
known to behave in just this fashion. The 1/7T, ratio for ®'Ru0Q,/**RuQ, for the
spin rotation mechanism is the ratio of y* values which is 1-256. Thus, for RuO,
at least, our interpretation of the experiments of Tarasov et al. [9] indicates that
the dominant quadrupolar mechanism is not the vibrational one. Since the curves
for the other systems behave similarly, there is reason to believe the two com-
peting mechanisms for the other neutral systems are the same as for RuQO, . The
collisional deformation quadrupolar mechanism dominates relaxation at low tem-
perature and become less important with increasing temperature. On the other
hand the other (non-quadrupolar) mechanism becomes more important with
increasing temperature. We have suggested the spin-rotation mechanism since it
has a temperature dependence which is consistent with this behaviour.

4.1. Electric field gradients due to collisional deformation

Now that we have ruled out the vibrational mechanism, let us consider the
other possible mechanisms for quadrupolar relaxation in highly symmetric
nuclear sites in neutral nonpolar molecules in gases or neat liquids. We will use a
binary collision model which has been successful in the interpretation of chemical
shifts of 12?Xe in xenon in various buffer gases, as well as other nuclei in non-
polar molecules. Collision-induced deshielding in these systems has been inter-
preted as arising largely from London dispersion forces. According to London, all
molecules produce fluctuating instantaneous electric fields which average out to
zero but which have a non-zero mean square, which leads to dispersion forces. An
electric field gradient i1s generated at the nuclear site by the fluctuating electric
fields due to the collision partner. The mean square fluctuating electric field
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mutually generated by an interacting pair of atoms separated by distance r is
given by

o, 11,
I+,

E? = (24)

|

at the position of atom 1. This is a slightly modified version of the equation
originally proposed by Raynes, Buckingham and Bernstein to explain chemical
shifts in gases with increasing density [27]. The quantities which determine the
magnitudes of these electric fields in non-polar molecules are the electric dipole
polarizability & of the collision partner, and ionization energies I; and 7, of the
pair.

We calculate the instantaneous electric field gradient generated by this electric
field as follows:

3 I, 112 o
g= —3 5a21+1 (1 + y) (25)
i 2

for the component along the interatomic axis. The factor (1 + 7) includes the
polarization of the core electrons of the atom in guestion due to the electric field
gradient generated by the collision partner at long range r. What we need is the
square of this instantaneous value which then is averaged over all the collision
partners and all orientations, (g2, which is given by

27 1,1
Ly = (149> — a2
<QZ2> ( ')’) 2 aZII + _[2

4np J‘wrms exp (— V(n)/kTw? dr. (26)
0

Values of the averages (r “#) have been calculated for potentials of the form

V = 4e{(ro/1)'? — (ro/1)°} (27)
gy _ () _ '
<1’ > - 127’(5)})4 H ) (28)

where Hy(y) are tabulated by Buckingham and Pople [28], for values of

oy = A RTH 2, o _ (29)

In the extreme marrowing limit, the quadrupole relaxation rate can be written
as

L 13 o
T, 20201 - 1) (eQ/h) L {Tr q(0) . q(2)) dr. (30)

We use the usual assumption that the field gradient time correlation function
decays exponentially with a time constant t, which implies that the relaxation rate
can be written as

R CT S ) WPV
Tl - 401’2(21 -1 (BQ/h) <QZ2(0)>TC’ (31)
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where {g2(0)> and 1, are estimated separately. Thus, the relaxation rate due to
collisional deformation by long-range interactions with molecules of type 2 is
given by

1,1, Hgly)
I+ 1, gyt

(32)

o3RI+ + )P 9
1/1 17 401’2(2)1 . 1;)) (eQ/h)ZTc ? Pa iy

The temperature dependence of the collision-induced electric field gradient is
that of Hg(y)/y* which decreases with increasing temperature. For example, for
g/k = 300 K, Hg(y)/y* = 12-69 at 133 K, and 5-14 at 300 K. Thus, the quadrupol-
ar relaxation rate by this mechanism decreasés with increasing temperature. This
behaviour is similar to that of the collision-induced chemical shifts which
decrease with increasing temperature. It is important to note that the quadrupolar
relaxation rate associated with the collisional-deformation-induced field gradient
as modelled here has a temperature dependence associated with the correlation
time as well as the temperature dependence explicitly given in equation (32).
Thus, it would not be unusual to find that the relaxation rate of a quadrupolar
nucleus in a highly symmetric site has a temperature dependence that is different
from that of 1*C or 'H in the same molecule, even under the assumption of
identical correlation times for relaxation of the various nuclei.
For a mixture, the p,ay 1,1, Hg(»)/(I; + I)rgy* term is replaced by

Z pio I I He(v)/(y + gyt

In this mechanism, a nucleus will have greater relaxation rate in a solvent which
has a higher polarizability. "*Ge in neat GeBr, will have a greater relaxation rate
than 7?Ge in neat GeCl, , on the basis of polarizabilities and ionization energies of
these molecules. Furthermore, >Ge in GeBr, in a mixture containing GeBr, and
GeCl, will have a lower relaxation rate than in neat GeBr,, whereas PGe in
GeCly in a mixture of GeCl, and GeBr, will have a greater relaxation rate. This
comes about not only from the &; and I; terms but also the potential well depth ¢,
in Hg(y) which is related to the product of polarizabilies of the observed molecule
1 and the collision partner i. Thus, the ordering of the *Ge relaxation rates in
molecules in a mixture of GeCl, _,Br, which was observed by Tarasov et al. [10]
is easily explained. In the same mixture, if no intrinsic efg is present in any of
these molecules, the collisional deformation by long range interactions gives
relaxation rates in the same order that would be expected from the medium-
induced chemical shifts: GeBry > GeClBr; > GeCl,Br, > GeCl;Br > GeCl, .
However, the presence of an intrinsic efg in the static isolated molecules gives the
mixed halogermanes the larger relaxation rates compared to the symmetrical ones.
The most asymmetric one, GeCl,Br, , should have the largest static electric field
gradient with GeClBr; and GeCl;Br following in the order of their polarizabil-
ities. Indeed the experimental relaxation rates are 1-7, 2:2, 2:6, 40, 465”1 for
GeCl,, GeBr,, GeCl;Br, GeClBr;, GeCl,Br, at 295 K. Furthermore the rates
for GeCl, and GeBr, decrease with increasing temperature, as predicted by this
model.

To determine if the magnitudes of the collisional deformation quadrupolar
relaxation rate are comparable with the experimental rates, we need to calculate
1/T, for at least one case. For "*Ge in neat liquid GeCl, we calculate the relax-
ation rate at 300K using the following data: [291 o« =168 X 1074 em?,
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gk = 300K, ro= 532 A, p=286moll™ !, I=12eV, and t, = 2ps. The other
constants are given in table 1. With equation (32) we obtain 1/7, = 257! to be
compared with the observed rate which is 1-2s7* [10].

In our simple model we have made the usual assumption that the time correla-
tion function of the induced electric field gradient has a simple exponential form.
If the decay of the time correlation function is non-exponential then the correla-
tion time 1. in equation (32) is an ‘eflective’ one, containing both structural and
dynamical information. It has been shown by molecular dynamic simulation for
Li*, Na*, and C17 in H,O that the {Tr q(0) . q(#)> time correlation function
exhibits a rapid initial decay and a successive second decay of a more diffusive
character, rather than the single exponential character which is usually assumed
[30]. The character of the time correlation function for a neutral MO, or M X, in
a non-polar solvent such as CCl, may also be non-exponential. However, we are
concerned here primarily with determining which mechanisms provide quadru-
polar relaxation rates of the appropriate order of magnitude rather than with the
details of the true time correlation function of the efg. Therefore, we simply
assumed an ‘effective’ correlation time 7, which i1s of the order of 1-2ps for
translational or reorientation motion of the molecules in a typical solution at room
temperature.

4.2. Electric field gradients due to electrical moments of solvent molecules

For the same highly symmetric non-polar molecule in a polar solvent, there
will be additional interactions. The field along the intermolecular axis due to a
linear dipolar molecule 2 is given by

E=2u,r *P(cos 0) + 30,7 *Py(cos ) + 4Q,r " *Py(cos &) + ..., (33)

where 0 is the angle the dipole makes with this axis. The instantaneous electric
field gradient generated by this is

g =14y —6u, 7" *P (cos 8) — 120, 7" °P,{cos 6) .
—20Q,7 % Py(cos N} + ... (34

for the component along the intermolecular axis. The average of the square of this
over all collision partners and orientation is

{az.> = (1 + 9?0, {36u3{r 3(P (cos )2 + 144@3(r ™ 1%(P,(cos 8))%)
+ 400Q2(r ™ 13 (Py(cos 0> + . (35)

where the averages on the right hand side of the equation are over the anisotropic
intermolcular potential. If we consider only the leading term in the electric dipole
moment y and neglect the anisotropy of the intermolecular potential, we obtain

s(y)
LV

(g = {(1 + yYYu3 4mpy/ri} (36)

This leads to

2
3(24!r + 3)(1 + ) O/ X T 4np2,u2 HBE})) (37)

4071721 —~ 1) ro y

/Ty,
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This may be compared with the expression derived by Hertz (his equation (55)

using his assumption of P = $) [3]

321 + (1 + p)?
401221 — 1

(1/T¢) = (eQ/1) 0 - 47em,0(Mitol70), (38)
where our #, is the Lennard-Jones parameter whereas Hertz’ 7o is 7y,0 + #ion -
Our equation (37) has the extra factor Hg(y)/y*. An equation similar to equation
(38) has been used in interpreting relaxation rates for 1313 e in polar solvents
[31].

We can also consider the contributions of higher electrical moments to the
relaxation rate in a tetrahedral non-polar solvent. The electrical field due to a
tetrahedral molecule at a distance » and oriented such that the end atoms are at
alternate corners of a cube and the cube is oriented such as to have angles 0., 0,
and 0, between its x, y, and # axes respectively and the vector 7, is given by [32]

E = 24Qr7 7 cos 6, cos 0, cos 0,. (39)

) is the electric octopole moment of the tetrahedral molecule. This electric field
generates an electric field component along r

g = —120Qr"° cos 8, cos 0, cos 0,. (40)

At the nuclear site this is enhanced by a factor (1 + ), so that if we neglect the
anisotropy of the intermolecular potential and assume a Lennard—jones form for

Vr),
{g2> = (1 + 7)?14400Q%cos? 0, cos? 0, cos? 8,5 x 4mpH ,(»)/(12¢3%).  (41)
The spherical average of cos® 8, cos® 8, cos” 8, is n2/64, so that

321 + (1 + )2 , 757: p£22 Hm(y)
40721 — 1) (eQr h) 7o p? (42)

(V/T))g=

We can now compare this contribution to the dispersion contribution. As before,
we use &k = 300 K and ry = 5-32 A and obtain H,,(y) from the tables of Buck-
ingham and Pople [28]. At 300K H,(y) = 50-5475. If the dispersion contribu-
tion to the relaxation rate is approximated by the expression in equation (32) and
the octopolar contribution by equation (42), then these two contributions become
equal if the octopole moment for GeCl, is equal to 357 x 107 ** esucm?®, The
octopole moment of GeCl, is not known but there are values available for other
tetrahedral molecules. For CH, Q=181 x 10 **esucm® [33], for SiF,
‘0 = 53 x 107 3* [34]. The octopole moment of a molecule can be evaluated from

Q == (5/2) Z e;x; ¥ 2 (43)

If we assume point charges f for the end atoms then
Q ~ (5/2)f Hr/ /3 ‘ (44)

or else bond dipole moments y at distance dy from the centre give an octopole
moment equal to = (10/\/3),ud0 The octopole moment of CH, in the point
charge model corresponds to a charge on each H atom equal to +0 153e. For
GeCly to have an octopole moment as large as 35:7 x 10~ 34 esucm? in this point
charge model, each Cl atom has a charge :+0-43 e. The bond moments in GeCl,
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have been estimated to be 3-2D [35]. If placed at the midpoint of the bonds,
these give = 20 x 107 ** esucm®. We see that the relaxation rates due to electric
field gradients induced by dispersion and by the octopole moment of the collision
partner are comparable in magnitude and are of the same order of magnitude as
the observed relaxation rates in the GeCl, solutions.

The expressions derived here are in the binary collision model. For the liquid
phase a continuum model such as that based on an Onsager reaction field which
has been used in the interpretation of solvent-induced shifts or quadrupolar relax-
ation in electrolytes may be more appropriate [36].

Finally, let us consider the similarity of temperature-dependent chemical
shifts and temperature-dependent quadrupolar relaxation rates. Nuclear shielding
g in the dilute gas phase is dependent on density p and temperature T, in a way
which is described by the leading terms in a virial expansion [28]

o(T, p) = oo(T) + oy (Thp + ... (45)

The first term, ao(7), is the temperature-dependent nuclear shielding for an
1solated molecule due to vibrational and rotational effects. These effects are fairly
large, due to centrifugal distortion, anharmonic vibration, and harmonic vibra-
tion, involving first derivatives of the nuclear shielding accompanied by cubic
force constants, and second derivatives of shielding, somewhat similar to the
terms in equations (14)-(16) [37]. These effects dominate '°F shifts with tem-
peratures at low densities. The second term, ¢,(7)p is due to intermolecular
interactions. Deformation of the electronic distribution around the nucleus
during a collision arises from long range van der Waals (and also electrical inter-
actions when polar molecules are involved) and short range overlap and exchange
interactions. The second term and higher order terms in density become domi-
nant at high densities, so that in the liquid phase only the temperature depen-
dence of the intermolecular interaction terms are observable. Only in low density
gas in the limit of zero pressure is it possible to observe only the rovibrationally-
induced chemical shifts.

The analogous situation occurs in quadrupolar relaxation. The electric field
gradient tensor components which are induced by vibrational excitation can only
be observed in the low density gas in the limit of zero pressure. At higher
densities, and certainly in the neat liquid or in solution, the electric field gradients
induced by collisional deformation are more important and will dominate quadru-
polar relaxation. In the gas phase at constant density, this latter mechanism is
more important at lower temperatures, because the averaging takes place pri-
marily in the attractive part of the intermolecular potential. In the liquid phase
other temperature-dependent factors enter, such as the decrease in density of the
liquid with increasing temperature in the usual constant pressure relaxation
experiment. Although a turn-around with temperature in the function ¢,(7T) in
the chemical shift experiment has not yet been observed, there is no physical
argument that rules it out, if sufficiently high temperatures are reached. By
analogy, the collisional deformation-induced electric field gradient could exhibit a
turn-around in its temperature behaviour. However, this is extremely uniikely for
the relatively narrow temperature ranges of the experiments by Tarasov ef al. The
observed turn-around with temperature is more plausibly attributed to the
growing importance of a second mechanism. Certainly in the case of RuQ,, the
systematic change with increasing temperature of the ratio of relaxation rates of
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101Ru and °?Ru away from the ratio of quadrupole moments is unequivocal
evidence for the growing importance of a non-quadrupolar mechanism.

5. CONCLUSIONS

The calculated relaxation rates due to vibrationally-induced electric field gra-
dients are orders of magnitude too small compared to experiment. Since we are
able to reproduce the vibrationally-induced nuclear quadrupole coupling con-
stants observed for **°Os in OsQ, with the model presented here, we expect the
calculated relaxation rates to be about right. Only the correlation time is unknown
and this cannot differ very much from several picoseconds in these liquids. Our
conclusion therefore is that the rate of the vibrational mechanism is far too small
to make a significant contribution to the relaxation rate in liquids. Since the
vibrational mechanism is too small to be dominant in the liquid phase for the
neutral species considered here, it is less likely to be descriptive of relaxation in
aquo complexes where electrostatic contributions play an important role. On the
other hand our experience with intermolecular effects on shielding suggests that
collisional deformation due to long-range van der Waals interactions can give rise
to fluctuating electric field gradients. The binary collision model presented here
has an explicit temperature dependence and depends on polarizabilities and other
molecular properties in a way that is consistent with the observed experimental
data for neutral species. For charged species, dipolar-solvent-induced electric
field gradients are more likely to be important. A unified theory which describes
both the relaxation and the chemical shifts in electrolyte solutions would be very
useful.

It is clear that temperature-dependent studies are essential in sorting out
mechanisms for relaxation in these highly symmetric nuclear sites.
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